Jawabanlimbah pertambangan adalah sisa hasil kegiatan pertambangan yang tidak lagi memiliki nilai ekonomis seperti logam berat cair. Pembahasan Limbah pertambangan adalah sisa hasil suatu proses pertambangan yang sudah tidak mempunyai nilai ekonomis. Limbah jenis ini biasanya mengandung material tambang itu sendiri.
This research has purpose to reduce heavy metal contain in liquid waste of gold industries PT. X in Surabaya. Most of liquid waste from gold jewellery industry is an inorganic waste with high acid composition low pH. The method being used is precipitation method with some variables such as type of presipitaior, pH of solution and time of precipitation. From the research's result with CaOH2 and NaOH, the higher the pH, the higher the percentage removal of metal Cu, Ni, Zn, and Fe. The same result with variables of precipitation's time when the longer floculation time, the higher the percentage removal of metal Cu, Ni, Zn and Fe. The optimum pH that can decrease metal content Cu, Ni, Zn and Fe, is 12. The percentage of removal with additional NaOH in order are and with additional CaOH2 are meanwhile the optimum time of precipitation to decrease metal concentrate is 30 minute. So from the result the addition of CaOH2 is much better than NaOH. Keywords Heavy metals, liquid waste, presipitationAbstrakPenelitian ini bertujuan untuk menurunkan kadar logam berat pada limbah cair industri emas PT. X di Surabaya. Limbah cair dari industri perhiasan emas sebagian besar merupakan limbah anorganik dengan kandungan asam yang cukup tinggi pH rendah. Metode yang digunakan adalah metode presipitasi pengendapan dengan beberapa variabel yaitu jenis bahan pengendap NaOH dan CaOH2, pH larutan dan waktu pengendapan. Dari hasil penelitian diketahui bahwa dengan penambahan CaOH2 maupun NaOH, semakin tinggi pH, maka semakin besar pula persen penurunan logam Cu, Ni, Zn, dan Fe. Demikian pula dengan variabel waktu pengendapan maka semakin lama waktu pengendapan maka semakin besar persen penurunan logam Cu, Ni, Zn, dan Fe. pH optimum yang dapat menurunkan kadar logam Cu, Ni, Zn dan Fe adalah pada pH 12. Besarnya persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan NaOH berturut - turut adalah 99,993%, 99,877%, 99,946% dan 99,935%. Besarnya persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan CaOH2 berturut-turut adalah 99,994%, 99,936%, 99,949% dan 99,941%, sedangkan waktu pengendapan yang optimum adalah pada 30 menit. Berdasarkan hasil penelitian terlihat bahwa presipitan CaOH2, lebih baik dibanding kunci Logam berat, limbah cair, presipitasi Discover the world's research25+ million members160+ million publication billion citationsJoin for free Jurnal Teknik Kimia Indonesia Vol. 9 No. 2 Agustus 2010, 55-6155PENURUNAN KADAR LOGAM BERAT LIMBAH CAIR INDUSTRI EMAS PT. X DI SURABAYA Nyoman Puspa Asri1*, Rachmad Abadi2, Arfina Hasmawati2, dan Sita Alfian Mubarok21Jurusan Teknik Kimia, Fakultas Teknik, Universitas Supratman Surabaya Jl. Arief Rachman Hakim No. 14 Surabaya 60111 2Jurusan Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Adhitama Surabaya Jl. Arief Rachman Hakim No. 100 Surabaya 60111 Email nyoman_puspaasri Abstrak Penelitian ini bertujuan untuk menurunkan kadar logam berat pada limbah cair industri emas PT. X di Surabaya. Limbah cair dari industri perhiasan emas sebagian besar merupakan limbah anorganik dengan kandungan asam yang cukup tinggi pH rendah. Metode yang digunakan adalah metode presipitasi pengendapan dengan beberapa variabel yaitu jenis bahan pengendap NaOH dan CaOH2, pH larutan dan waktu pengendapan. Dari hasil penelitian diketahui bahwa dengan penambahan CaOH2 maupun NaOH, semakin tinggi pH, maka semakin besar pula persen penurunan logam Cu, Ni, Zn, dan Fe. Demikian pula dengan variabel waktu pengendapan maka semakin lama waktu pengendapan maka semakin besar persen penurunan logam Cu, Ni, Zn, dan Fe. pH optimum yang dapat menurunkan kadar logam Cu, Ni, Zn dan Fe adalah pada pH 12. Besarnya persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan NaOH berturut - turut adalah 99,993%, 99,877%, 99,946% dan 99,935%. Besarnya persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan CaOH2 berturut-turut adalah 99,994%, 99,936%, 99,949% dan 99,941%, sedangkan waktu pengendapan yang optimum adalah pada 30 menit. Berdasarkan hasil penelitian terlihat bahwa presipitan CaOH2, lebih baik dibanding NaOH. Kata kunci Logam berat, limbah cair, presipitasi Abstract This research has purpose to reduce heavy metal contain in liquid waste of gold industries PT. X in Surabaya. Most of liquid waste from gold jewellery industry is an inorganic waste with high acid composition low pH. The method being used is precipitation method with some variables such as type of presipitaior, pH of solution and time of precipitation. From the research's result with CaOH2and NaOH, the higher the pH, the higher the percentage removal of metal Cu, Ni, Zn, and Fe. The same result with variables of precipitation's time when the longer floculation time, the higher the percentage removal of metal Cu, Ni, Zn and Fe. The optimum pH that can decrease metal content Cu, Ni, Zn and Fe, is 12. The percentage of removal with additional NaOH in order are and with additional CaOH2 are meanwhile the optimum time of precipitation to decrease metal concentrate is 30 minute. So from the result the addition of CaOH2 is much better than NaOH. Keywords Heavy metals, liquid waste, presipitation *korespondensi Jurnal Teknik Kimia Indonesia Vol. 9 No. 2 Agustus 201056 1. Pendahuluan PT. X industri perhiasan emas di Surabaya Timur merupakan industri yang menghasilkan perhiasan dari bahan emas, dimana dalam proses pembuatan perhiasan tersebut menghasilkan limbah cair yang banyak mengandung logam berat. Apabila limbah ini langsung dibuang ke badan air maka dapat menimbulkan dampak negatif terhadap lingkungan sekitar. Limbah industri PT. X ini memiliki kandungan logam-logam berat yang dapat disetarakan dengan limbah industri electroplating. Limbah cair dari industri perhiasan emas sebagian besar merupakan limbah anorganik dengan kandungan asam yang cukup tinggi. Tabel 1. Karakteristik Limbah Cair PT. X Komponen Cu Ni Zn Fe Logam ppm 29627,79 187,5 295,75 2562,79 Baku Mutu 5 1 20 20 Tabel di atas menunjukkan bahwa kandungan logam berat yang berasal dari limbah cair PT. X seperti logam Cu, Ni, Zn, Cd dan Fe, melebihi kadar maksimum baku mutu limbah cair electroplating, sehingga perlu untuk dilakukan pengolahan limbah cair tersebut untuk mengurangi kadar logam berat sebelum di buang ke badan air. Untuk menurunkan kadar logam tersebut, PT. X telah melakukan pengolahan limbah sebelum dibuang ke badan air dengan menggunakan metode presipitasi, yaitu dengan menambahkan NaOH sebagai bahan presipitan pada pH namun kadar logam berat masih di atas ambang batas baku mutu yang diijinkan. Limbah cair PT. X berasal dari proses refinery, proses bombing dan glundung, proses pencucian dan proses pengaturan warna dan bilasan. Rachmad dkk. telah melakukan penelitian pendahuluan menggunakan sampel air limbah sebanyak 200 mL menggunakan metode Jar-tes dengan menggunakan komposisi air limbah dari keempat proses di atas sebagai variabel, dengan penambahan NaOH pada pH sekitar 8,5-10. Hasil penelitian menunjukkan bahwa pH awal limbah adalah 2, sedangkan komposisi limbah terbaik adalah 13,37% limbah dari bak penampung limbah I proses refinery, 1,96% limbah dari bak penampung limbah II proses bombing dan glundung, 5,72% limbah dari bak penampung limbah III proses pencucian, 78,95% limbah dari bak penampung limbah IV proses pengaturan warna dan bilasan, dengan penurunan kadar logam berat berkisar antara 96-98%. Roekmijati dkk. 2001, telah melakukan penelitian tentang "Presipitasi Bertahap Logam Berat Limbah Cair Industri Pelapisan Logam Menggunakan Larutan Kaustik Soda". Hasil penelitiannya menunjukkan bahwa dengan variabel pH 4,6 dan 8 tidak berpengaruh secara signifikan terhadap penurunan kadar logam berat Cu dan Fe. Dari latar belakang di atas, dapat diketahui bahwa kadar logam berat yang melebihi baku mutu pemerintah adalah logam Cu, Ni, Zn dan Fe sehingga dilakukan penelitian untuk menurunkan kadar logam-logam berat tersebut sampai sekecil mungkin dengan metode prespitasi. Banyak faktor yang mempengaruhi proses presipitasi, namun pada penelitian ini difokuskan pada variabel pH, waktu pengendapan dan jenis presipitan. Jenis presipitan yang digunakan adalah NaOH dan CaOH2. CaOH2 digunakan sebagai pembanding NaOH yang selama ini digunakan dengan harapan didapat presipitan yang lebih efektif dan efisien. Tujuan dari penelitian ini adalah untuk mendapatkan harga pH larutan dan waktu pengendapan yang memberikan persen penurunan logam Cu, Ni, Zn dan Fe yang paling besar. Di samping itu juga untuk mengetahui diantara dua presipitan yang digunakan mana yang lebih efisien. Hasil penelitian ini diharapkan dapat digunakan sebagai referensi, sebagai bahan perbandingan maupun sebagi acuan bagi industri-industri yang sejenis dalam mengolah limbah cair terutama dalam penurunan logam berat yang terkandung didalamnya. Teori Dasar Pada dasarnya logam berat dalam air buangan dapat dipisahkan dengan berbagai cara yaitu dengan proses fisika, kimia dan biologi. Proses pengambilan logam berat yang terlarut dalam suatu larutan biasanya dilakukan dengan cara prespitasi, reverse osmosis, ion exchange dan adsorbsi. Penurunan kandungan logam berat pada air limbah industri ini, dilakukan dengan proses fisik-kimia. Teknologi pengolahan air limbah yang mengandung logam-logam telah lama dikembangkan dan metode yang Penurunan Kadar Logam Berat Limbah Cair Nyoman Puspa Asri dkk. 57umumnya digunakan adalah menggunakan prinsip presipitasi. Pengolahan limbah dengan metode presipitasi merupakan salah satu metode pengolahan limbah yang banyak digunakan untuk memisahkan logam berat dari limbah cair. Dalam metode presipitasi kimia dilakukan penambahan sejumlah zat kimia tertentu untuk mengubah senyawa yang mudah larut ke bentuk padatan yang tak larut. Tiap-tiap logam memiliki karakteristik pH optimum presipitasi tersendiri, yaitu pH pada saat logam tersebut memiliki kelarutan minimum. Oleh karena itu pada limbah yang mengandung beragam logam presipitasi dilakukan secara bertahap, yaitu dengan melakukan perubahan pH pada tiap tahapannya sehingga logam-logam tersebut dapat mengendap secara bertahap. Presipitasi kimia adalah suatu prosedur standar untuk menyisihkan atau menurunkan kandungan logam berat dari air dan air limbah. Pembentukan presipitat sangat ditentukan oleh penambahan bahan kimia sebagai pengikat logam-logam. Dosis bahan kimia yang dibutuhkan relative sulit dihitung secara teoritis, umumnya ditentukan melalui percobaan dalam skala laboratorium. Percobaan dengan penentuan dosis bahan kimia untuk proses presipitasi atau koagulasi ini sering disebut sebagai Jar-Test. Adapun yang mempengaruhi percobaan dengan Jar-Test ini, antara lain 1. Bahan kimia yang dipakai untuk menurunkan kadar logam berat 2. Penambahan dosis presipitan 3. pH 4. Kecepatan pengadukan 5. Waktu pengendapan. Penurunan kadar logam berat terutama tergantung pada dua faktor, yaitu 1. Kelarutan teoritis yang membentuk spesies padatan terlarut sebagai fungsi dari konstanta kesetimbangan kelarutan, pH dan konsentrasi bahan pembentuk presipitat. 2. Pemisahan padatan dari larutan yang membawanya. Logam-logam berat umumnya dipresipitasi sebagai hidroksidanya dengan penambahan Kapur CaOH2 atau Soda Api NaOH untuk menjaga minimum PH kelarutan. Ada beberapa jenis logam yang bersifat amfoter sebagaimana ditunjukkan pada Gambar 1. Kelarutan Chrom Cr dan Seng Zn secara teoritis minimum masing-masing pada pH 7,5 dan 10,2 menunjukkan suatu kenaikan signifikan dalam konsentrasi jika di atas atau di bawah nilai pH tersebut Day dan Underwood, 1991. Gambar 1 Pengaruh pH pada logam berat sebagai Hidroksida Pada beberapa keadaan faktor-faktor di atas dapat mengganggu proses presipitasi karena kelebihan ion-ion yang berbeda muatannya yang dapat menyebabkan presipitat tidak dapat mengendap atau dipisahkan dari air yang membawanya. Oleh karenanya diperlukan suatu tambahan bahan kimia yang membantu proses presipitasi. Bahan kimia ini disebut sebagai bahan kopresipitasi yang berfungsi untuk menyerap dan menggumpalkan. Logam yang bersifat kopresipitat adalah Alumunium hidroksida AlOH3 dan Feri hidroksida FeOH3 Eckenfelder, 1989. Reaksi-reaksi Presipitasi hidroksida untuk semua logam-logam kationik M adalah sama dengan yang ditunjukkan dengan reaksi sebagai berikut MCO3+CaOH2→MOH2↓+CaCO3↓ 1 MSO4+CaOH2→MOH2↓+CaSO4↓ 2 MCl2 +CaOH2→MOH2↓+CaCl3↓ 3 MSO4+2NaOH →MOH2↓+NaSO4↓ 4 MCO3+2NaOH →MOH2↓+NaCO3↓ 5 MCl2 +2NaOH →MOH2↓+NaCl2↓ 6 Pemakaian kapur lebih menguntungkan daripada pemakaian soda api karena garam-garam kapur bersifat mengendap dan dapat bertindak sebagai kopresipitat. Kerugian pemakaian kapur adalah jumlah lumpur yang dihasilkan lebih banyak dibandingkan dengan penggunaan Jurnal Teknik Kimia Indonesia Vol. 9 No. 2 Agustus 201058 soda, tetapi lebih ekonomis karena harganya lebih murah dan mudah didapat. Untuk presipitasi logam berat limbah cair dengan menggunakan kaustik soda, sebelumnya dilakukan penambahan NaHSO340% untuk mengendapkan CrVI, karena CrVI sukar mengendap dengan menggunakan kaustik. Logam Cr mengalami kenaikan proses penyisihan dengan meningkatnya volume presipitan. Logam Cu, Fe dan Mn mengalami penurunan proses penyisihan logam dengan semakin besarnya volume presipitan. Proses penyisihan tertinggi untuk logam Cr 98,04% dicapai pada pH 8,2, Cu sebesar 99,94% pada pH 8,5, Fe sebesar 99,97°% pada pH 7, sedangkan Mn sebesar 99,5% pada pH 8,8 Roekmijati dkk., 2001. Logam berat dapat pula dipresipitasi sebagai sulfida dan karbonat seperti dalam kasus pengolahan limbah timah. Kelarutan sulfida dan karbonat umumnya lebih rendah daripada bentuk hidroksida, sehingga lebih sulit mencapai konsentrasi luaran yang diiinginkan. Gambar 2. Pengaruh pH dan amoniak pada kelarutan Cu dan Cr. Presipitasi karbonat baik untuk pengendapan logam Pb dan Ni. Pengolahan limbah yang mengandung logam kadang kala memerlukan pengolahan pendahuluan untuk menghilangkan ion-ion pengganggu proses presipitasi logam. Sianida dan amoniak dapat membentuk senyawa kompleks dengan logam-logam dan mengganggu proses presipitasi. Sianida dapat dihilangkan dengan klorinasi alkali atau dengan oksidasi katalitik, akan tetapi limbah sianida yang mengandung nikel dan perak sulit untuk dihilangkan dengan metode klorinasi alkali. Amoniak bisa dihilangkan dengan aerasi khlorinasi titik retak. Kelarutan logam-logam dengan atau tanpa adanya amoniak sebagai fungsi pH dapat dilihat pada Gambar 2. Pada presipitasi arsen dan besi, oksidasi mungkin memerlukan penggunaan klor atau permanganate. Untuk pengolahan limbah khrom, khrom heksavalensi Cr6+ harus direduksi terlebih dahulu menjadi khrom trivalent Cr3+ dan kemudian di presipitasi dengan kapur Day dan Underwood, 1991. 2. Metodologi Penelitian ini dilakukan melalui beberapa tahap meliputi persiapan sampel, percobaan dan analisis hasil. Penyiapan sampel sebanyak 200 mL dilakukan dengan mencampur keempat sumber limbah yaitu limbah dari proses refinery, limbah bombing dan glundung, proses pencucian, dan limbah pengaturan warna dan bilasan, masing masing 13,37%, 1,96%, 5,72% dan 78,95%. Proses presipitasi dengan metode Jar-Test dengan variabel pH 8, 9, 10, 11 dan 12, dengan pengadukan 100 rpm selama 10 menit. Selanjutnya larutan polimer kuriflok ditambahkan sebanyak 10 mL dan melakukan pengadukan dengan kecepatan 60 rpm selama 5 menit, serta menambahkan presipitan NaOH dan CaOH2. Sampel didiamkan sesuai variabel waktu pengendapan yaitu 15, 20, 25 dan 30 menit. Analisis hasil dilakukan dengan metoda AAS. Persen penurunan kadar logam dihitung dengan rumus %  =   − ℎ   100% 3. Hasil dan Pembahasan Analisis kandungan logam berat pada sampel awal maupun setelah eksperimen dilakukan dengan metode AAS. Gambar 3, 4, 5, dan 6 menunjukkan pengaruh pH terhadap persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan NaOH pada waktu flokulasi sesuai dengan variabel 15, 20, 25 dan 30 menit. Dari gambar-gambar tersebut terlihat bahwa semakin besar pH maka persen penurunan logam semakin besar. Pada Gambar 4. terlihat bahwa dengan penambahan bahan presipitan NaOH dengan waktu pengendapan 30 menit, persen penurunan logam Fe pada pH 8, 9, 10, 11 dan Penurunan Kadar Logam Berat Limbah Cair Nyoman Puspa Asri dkk. 59Gambar 3. Pengaruh pH terhadap persen penurunan logam Cu dengan presipitan NaOH Gambar 4. Pengaruh pH terhadap persen penurunan logam Ni dengan presipitan NaOH Gambar 5. Pengaruh pH terhadap persen penurunan Logam Zn dengan presipitan NaOH Gambar 6. Pengaruh pH terhadap persen penurunan logam Fe dengan presipitan NaOH 99,921%, 99,923%, dan 99,935%. Persen penurunan tertinggi adalah pada pH 12 yaitu sebesar 99,935%, hal ini menunjukkan bahwa semakin tinggi pH maka persen penurunan logam semakin besar. Literatur menyebutkan bahwa pH sangat berpengaruh pada saat ion-ion logam terikat dengan OH- yang ada pada presipitan NaOH dan membentuk endapan. Reaksi ikatan ion-ion logam tersebut adalah sebagai berikut Cu2+ + 2NaOH→ CuOH2↓ + 2Na+ 7 Ni2+ + 2NaOH→NiOH2 ↓ + 2Na+ 8 Zn2+ + 2NaOH→ZnOH2↓ + 2Na+ 9 Fe2+ + 2NaOH→FeOH2 ↓ + 2Na+ 10 Selain itu semakin tinggi pH maka semakin besar konsentrasi ion OH- sehingga harga hasil kali kelarutan ion-ion [Cu 2+] [OH-]2 > Ksp CuOH2, dan mengakibatkan semakin banyak Cu yang mengendap. Kondisi ini berlaku juga untuk logam-logam lainnya. Gambar 7. Pengaruh pH terhadap persen penurunan logam Cu dengan presipitan CaOH2Gambar 8. Pengaruh pH terhadap persen penurunan logam Ni dengan presipitan CaOH2Gambar 7, 8, 9, dan 10 menunjukkan pengaruh pH terhadap persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan 99,95099,95599,96099,96599,97099,97599,98099,98599,99099,9958 9 10 11 12% Penurunan LogampH20 menit25 menit96,00096,50097,00097,50098,00098,50099,00099,500100,0008 9 10 11 12% Penurunan logampH25 menit98,40098,60098,80099,00099,20099,40099,60099,800100,0008 9 10 11 12% Penurunan LogampH15 menit99,70099,75099,80099,85099,90099,9508 9 10 11 12% Penurunan LogampH15 menit20 menit25 menit30 menit99,95099,95599,96099,96599,97099,97599,98099,98599,99099,995100,0008 9 10 11 12% Penurunan LogampH30 menit96,00096,50097,00097,50098,00098,50099,00099,500100,0008 9 10 11 12% Penurunan LogampH15 menit25 menit30 menit Jurnal Teknik Kimia Indonesia Vol. 9 No. 2 Agustus 201060 presipitan CaOH2 dengan variabel waktu pengendapan 15, 20, 25, 30 menit. Gambar tersebut menunjukkan bahwa semakin besar pH maka persen penurunan masing-masing logam semakin besar. Gambar 9. Pengaruh pH terhadap persen penurunan logam Zn dengan presipitan CaOH2 Gambar 10. Pengaruh pH terhadap persen penurunan logam Fe dengan presipitan CaOH2 Pada Gambar 10 terlihat bahwa persen penurunan tertinggi adalah pada pH 12 yaitu sebesar 99,941%, hal ini menunjukkan bahwa semakin tinggi pH maka persen penurunan logam semakin besar. Dalam literatur menyebutkan bahwa pH sangat berpengaruh pada saat ion - ion logam terikat dengan OH-yang ada pada presipitan NaOH dan membentuk endapan. Reaksi ikatan ion-ion logam tersebut adalah sebagai berikut Cu2+ + CaOH2→ CuOH2↓ + Ca2+ 11 Ni2+ + CaOH2→ NiOH2↓ + Ca2+ 12 Zn2+ + CaOH2→ ZnOH2↓ + Ca2+ 13 Fe2+ + CaOH2→ FeOH2↓ + Ca2+ 14 Gambar 11 menunjukkan bahwa persen penurunan terbesar pada pH 12 dengan waktu pengendapan 30 menit adalah logam Cu baik dengan menggunakan presipitan NaOH maupun CaOH2. Besarnya persen penurunan hampir mendekati 100% yaitu 99,993% dengan menggunakan bahan presipitan CaOH2 dan 99,990% dengan menggunakan presipitan NaOH. Terlihat bahwa logam Cu sudah mengendap sempurna pada pH 12, hal ini terjadi karena cupri oksida memiliki kelarutan minimum pada pH 9,0 yaitu sebesar 10 μg/L Haas dan Vamos, 1992 sehingga untuk mendapatkan persen penurunan logam Cu yang besar diperlukan pH yang lebih besar daripada pH kelarutan minimumnya. Gambar 11. persen Penurunan logam Cu, Ni, Zn dan Fe dengan presipitan NaOH dan CaOH2 pada waktu 30 menit dan pH 12. Persen penurunan logam Ni, Fe, dan Zn berturut-turut yaitu 99,877%, 99,941 %, 99,949% dengan presipitan NaOH dan 99,936%, 9,946%, 9,946% dengan presipitan CaOH2. Penurunan logam ini lebih kecil dibandingakan dengan penurunan logam Cu. Hal ini disebabkan karena logam-logam tersebut mempunyai pH kelarutan minimum yang lebih besar pH Ni =10-11; pH Fe = 10; pH Zn = 10,5 dari pada pH kelarutan minimum Cu pH = 9 sehingga untuk mengendapkan logam-logam tersebut dibutuhkan pH yang lebih tinggi daripada pH Cu. Dari Gambar 11 juga terlihat bahwa penambahan presipitan kapur CaOH2 lebih bagus dibanding dengan menggunakan kaustic soda NaOH dalam mengurangi kadar logam, hal itu disebabkan kapur mengendapkan logam lebih cepat dan dapat bertindak sebagai kopresipitat Haas dan Vamos, 1992. Reaksi-reaksi Presipitasi hidroksida untuk semua logam-logam kationik M adalah sama dengan yang ditunjukkan dengan reaksi sebagai berikut MCO3+CaOH2→MOH2 + CaCO3↓ 15 MSO4+CaOH2→MOH2 + CaSO4↓ 16 98,40098,60098,80099,00099,20099,40099,60099,800100,0008 9 10 11 12% Penurunan LogampH25 menit99,74099,76099,78099,80099,82099,84099,86099,88099,90099,92099,94099,9608 9 10 1 1 12% Penurunan LogampH15 menit99,80099,82099,84099,86099,88099,90099,92099,94099,96099,980100,000100,020% PenurunanLogamNaOHCaOH2 Penurunan Kadar Logam Berat Limbah Cair Nyoman Puspa Asri dkk. 61MCl2 +CaOH2→MOH2 + CaCl2↓ 17 MCO3+2NaOH→MOH2 + CaCO3↓ 18 MSO4 +CaOH2→MOH2 + CaSO4↓ 19 MCl2 + CaOH2→MOH2 + CaCl2↓ 20 Perbedaan penambahan presipitan NaOH dengan CaOH2 dari segi effisiensi biaya maupun operasionalnya ditunjukkan dengan tabel di bawah Tabel 2. Perbandingan koagulan NaOH dan CaOH2 Eckenfelder, 1989 Parameter NaOH CaOH2 dihasilkan pengendapan Dari Tabel 2 di atas terlihat bahwa kerugian menggunakan kapur adalah jumlah lumpur yang dihasilkan lebih banyak dibandingkan dengan penggunaan NaOH, tetapi Lumpur yang dihasilkan sebagai limbah padat dapat diolah lagi menjadi Paving. Secara ekonomi harga kapur lebih murah dibandingkan dengan NaOH. Dari penelitian yang telah dilakukan oleh Roekmijati dkk. 2001, dalam penurunan logam berat Cu dan Fe dengan variable pH 4, 6 dan 8 tidak begitu berpengaruh terhadap penurunan kadar logam karena pH minimal dari kedua logam tersebut adalah pada pH 10 untuk logam Cu dan 12 untuk logam Fe. Penelitian ini menggunakan variabel pH 8, 9, 10, 11 dan 12 untuk menentukan pH optimum dari masing - masing logam. Dari hasil penelitian ini didapatkan bahwa pH optimum untuk logam Cu dan Fe ada di atas pH 12. Gambar 3-10 menunjukan bahwa semakin lama waktu pengendapan maka persen penurunan logam semakin besar. Persen penurunan logam optimum dicapai pada waktu 30 menit untuk presipitan CaOH2 maupun NaOH. Hal ini disebabkan bahwa semakin lama waktu pengendapan maka ikatan-ikatan logam dengan presipitan akan semakin banyak terbentuk, yang mana ikatan-ikatan logam ini akan membentuk flok-flok dan mengendap, sehingga logam yang terlarut dalam air semakin kecil dan persen penurunan logamnya akan semakin besar. Kesimpulan Dari penelitian yang telah dilakukan dapat ditarik kesimpulan sebagai berikut 1. Persen penurunan terbesar pada pH dan waktu flokulasi optimum dengan penambahan presipitan NaOH adalah logam Cu dengan persen penurunan sebesar 99,993%. Sedangkan persen penurunan terbesar pada pH dan waktu flokulasi optimum dengan penambahan presipitan CaOH2 adalah logam Cu dengan persen penurunan sebesar 99,994%. 2. Waktu optimum yang dicapai oleh presipitan NaOH dan CaOH2 dalam mengendapakan logam-logam adalah 30 menit. 3. Penambahan presipitan CaOH2 lebih baik dibandingkan NaOH karena menghasilkan persen penurunan logam Cu, Ni, Zn dan Fe lebih besar dan dari segi effisiensi biaya maupun pengolahannya. Daftar Pustaka Day, R. A. Jr.; Underwood, A. L., Analisa Kimia Kuantitatif, Edisi 4, Penerbit Erlangga, Jakarta, 1991. Eckenfelder, W. W., Jr., Industrial Water Pollution Control, 2nd Ed., McGraw-Hill International, Singapore, 1989. Haas, C. N.; Vamos, R. J., Hazardous and Industrial Waste Treatment, Prentice Hall, Engelwood Cliffs, New Jersey, 1992. Roekmijati, W. S.; Praswasti PDK. W.; Yulianti, Presipitasi Bertahap Logam Berat Limbah Cair Industri Pelapisan Logam Menggunakan Larutan Kaustik Soda, Jurusan Teknik Gas dan Petrokimia, Fakultas Teknik, Universitas Indonesia, 2001, akses Juli 2008. Patterson, J. W., Industrial Wasterwater Treatment Technology, 2nd Edition, McGraw-Hill International, Singapore, 1989. ... Berdasarkan Gambar 6 ditunjukkan bahwa proses elektrokoagulasi menggunakan elektroda Al terendah pada 9,48 pada rapat arus 1 A/dm 2 , sedangkan dengan elektroda Fe menghasilkan pH air buangan yang semakin naik dari pH 9,23 pH 9,87. Perbedaan ini disebabkan bahwa harga hasil kelarutan Ksp FeOH2 dan AlOH3 berbeda yaitu -16 dan -33 Asri et al., 2018;Heidelberger & Treffers, 1989;Rasmito, 2018. Hal tersebut berarti kedua senyawa tersebut mulai mengendap atau membentuk koagulan dengan harga pH yamg berbeda atau jumlah OHyang diperlukan untuk mengendapkannya berbeda. ...... Terdapat beberapa faktor yang mendukung terhadap proses presipitasi, diantaranya adalah bahan kimia yang dipakai untuk menurunkan kadar logam berat jenis presipitan, dosis presipitan, derajat keasaman pH, kecepatan pengadukan dan waktu pengendapan Asri et al., 2010. ...Wisni Rona AnamiMamay Maslahat Dian ArrisujayaPrecipitation of Laboratory Wastewater Heavy Metals by Natural Sulphur Sodium Sulfide Sodium sulfide Na2S from natural sulfur has been used for heavy metal precipitation from laboratory wastewater. Heavy metals in laboratory wastewater include mercury Hg, lead Pb, chromium Cr and zinc Zn. Initial laboratory wastewater testing was performed by measuring the initial pH and the concentration of heavy metals in the wastewater prior to precipitation using the atomic absorption spectrophotometer. Sulphide precipitation phase consists of variations in the concentration of NaOH, time, temperature, and volume of dissolving Na2S. Parameters for the efficiency of Hg, Pb, Zn and Cr heavy metal precipitation were the initial pH, concentration and rate of stirring of the solution. Results showed that the optimum precipitation efficiency for Zn is achieved by using 10 % Na2S solution with an efficiency of %. The most significant reduction in Cr and Hg was the use of 20 % Na2S solution with a precipitation efficiency of % and % respectively. The optimal efficiency for Pb with a 30 % Na2S solution was %. Natural sulfur can reduce the levels of heavy metals in laboratory wastewater by words Natural sulfur, Heavy metals, Precipitation, Sodium sulfide, ABSTRAKPresipitasi logam berat dari limbah cair laboratorium telah dilakukan dengan menggunakan natrium sulfida Na2S dari belerang alam. Logam berat yang terkandung dalam limbah cair laboratorium diantaranya adalah merkuri Hg, timbal Pb, kromium Cr dan seng Zn. Pengujian awal limbah laboratorium dilakukan dengan mengukur pH awal dan kadar logam berat yang terdapat dalam limbah sebelum presipitasi menggunakan pH meter dan spektrofotometer serapan atom. Tahapan presipitasi limbah oleh sulfida meliputi pembuatan variasi konsentrasi NaOH, waktu, suhu, dan volume pelarutan Na2S. Parameter efisiensi presipitasi logam Hg, Pb, Zn, dan Cr meliputi pH, Konsentrasi dan Kecepatan pengadukan. Hasil penelitian menunjukkan efisiensi pengendapan optimal untuk logam Zn terdapat pada penggunaan larutan Na2S 10% dengan efisiensi 97,93%. Larutan Na2S 20% paling banyak menurunkan logam Cr dan Hg dengan efisiensi masing-masing sebesar 99,24% dan99,76%. Efisiensi optimal untuk logam Pb berada pada penggunaan larutan Na2S 30% dengan efisiensi 99,68%. Belerang alam mampu menurunkan kadar logam berat dalam limbah cair laboratorium dengan metode kunci Belerang alam, Logam berat, Presipitasi, Natrium sulfidaR A DayA L UnderwoodDay, R. A. Jr.; Underwood, A. L., Analisa Kimia Kuantitatif, Edisi 4, Penerbit Erlangga, Jakarta, Water Pollution Control, 2 nd EdW W EckenfelderJrEckenfelder, W. W., Jr., Industrial Water Pollution Control, 2 nd Ed., McGraw-Hill International, Singapore, and Industrial Waste TreatmentC N HaasR J VamosHaas, C. N.; Vamos, R. J., Hazardous and Industrial Waste Treatment, Prentice Hall, Engelwood Cliffs, New Jersey, Bertahap Logam Berat Limbah Cair Industri Pelapisan Logam Menggunakan Larutan Kaustik Soda, Jurusan Teknik Gas dan Petrokimia, Fakultas TeknikW S RoekmijatiPdk W PraswastiYuliantiRoekmijati, W. S.; Praswasti PDK. W.; Yulianti, Presipitasi Bertahap Logam Berat Limbah Cair Industri Pelapisan Logam Menggunakan Larutan Kaustik Soda, Jurusan Teknik Gas dan Petrokimia, Fakultas Teknik, Universitas Indonesia, 2001, akses Juli 2008.Industrial Wasterwater Treatment Technology, 2 nd EditionJ W PattersonPatterson, J. W., Industrial Wasterwater Treatment Technology, 2 nd Edition, McGraw-Hill International, Singapore, 1989.
Berbagaimetode pengolahan air limbah terus diteliti untuk menentukan metode terbaik. Mahasiswi Departemen Manajemen Sumberdaya Perairan Institut Pertanian Bogor, Rofi’ul Hidayah berinisiasi menggunakan biji asam Jawa untuk mereduksi kandungan logam berat yang terdapat pada air limbah penambangan emas tradisional.
ArticlePDF AvailableAbstractPengolahan emas menggunakan merkuri di Poboya menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar. Penelitian ini bertujuan untuk mengetahui potensi air asam tambang yang berasal dari limbah pengolahan emas. Metode yang digunakan yaitu dengan karakterisasi mineralogi dan geokimia. Hasil penelitian menunjukkan terdeteksi adanya mineral sulfida pada setiap sampel yaitu rambergit FeMnS dan violarit FeNi2S4, serta mineral sulfida sekunder yaitu melanterit dan retgersit Kehadiran mineral sulfida pada sampel berpengaruh terhadap pembentukan air asam tambang. Hasil Pengujian terhadap semua sampel terdeteksi unsur- unsur yang banyak terkandung dalam air asam tambang seperti seperti besi Fe sebesar sampai dengan ambang batas 20?g/g, mangan Mn sebesar 202,66?g/g sampai 372,92?g/g dengan ambang batas 0,15?g/g, dan seng Zn sebesar 4,98?g/g sampai 75,04?g/g dengan ambang batas 0,06?g/g, semua unsur tersebut telah melebihi ambang batas menurut Badan Standarisasi Nasional SNI, 2004. Hasil penelitian menunjukkan limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. Discover the world's research25+ million members160+ million publication billion citationsJoin for freeContent may be subject to copyright. Jurnal Geomine, Vol. 6, No. 2 Agustus 201849 ANALISIS KARAKTERISTIK LIMBAH PENGOLAHAN EMAS DAN POTENSI PEMICU AIR ASAM TAMBANG PADA PERTAMBANGAN RAKYAT KELURAHAN POBOYA KAB. DONGGALA, PROV. SULAWESI TENGAH Abdullah Kilian1*, Sri Widodo2, Nurliah Jafar1 Teknik Pertambangan, Universitas Muslim Indonesia Studi Teknik Pertambangan Universitas Hasanuddin Email abdullahkilian2 Pengolahan emas menggunakan merkuri di Poboya menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar. Penelitian ini bertujuan untuk mengetahui potensi air asam tambang yang berasal dari limbah pengolahan emas. Metode yang digunakan yaitu dengan karakterisasi mineralogi dan geokimia. Hasil penelitian menunjukkan terdeteksi adanya mineral sulfida pada setiap sampel yaitu rambergit FeMnS dan violarit FeNi2S4, serta mineral sulfida sekunder yaitu melanterit dan retgersit Kehadiran mineral sulfida pada sampel berpengaruh terhadap pembentukan air asam tambang. Hasil Pengujian terhadap semua sampel terdeteksi unsur-unsur yang banyak terkandung dalam air asam tambang seperti seperti besi Fe sebesar sampai dengan ambang batas 20µg/g, mangan Mn sebesar 202,66µg/g sampai 372,92µg/g dengan ambang batas 0,15µg/g, dan seng Zn sebesar 4,98µg/g sampai 75,04µg/g dengan ambang batas 0,06µg/g, semua unsur tersebut telah melebihi ambang batas menurut Badan Standarisasi Nasional SNI, 2004. Hasil penelitian menunjukkan limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. Kata kunci air asam tambang, emas, limbah, mineral sulfida. ABSTRACT The gold processing with mercury in Poboya causes waste that has the impact on the envimental problems in surrounding area. This study aimed to determine the potential of the mine acid drainage from gold processing waste. The method used is the characterization of mineralogy and geochemistry. The results showed that sulphide minerals were detected in each sample, sucha rembergite FeMnS, violarite FeNi2S4, and secondary sulphide minerals melanterite and retgersite The presence of sulphide minerals in the sample affected the formation acid mine drainage. The assay result of all samples showed the detection of the elements contained acid mine drainage such as iron Fe of to with a threshold of 20μg/g, manganese Mn of 202,66μg/g to 372,9μg/g with a threshold of 0,15μg/g, and zinc Zn of 4,98μg/g to 75,04μg/g with a threshold of all of these elements have exceeded the threshold according to the National Standardization Agency SNI, 2004. The results showed that the gold processing waste at the study site has the potential to generate the acid mine drainage. Keywords acid mine drainage, gold, tailing, sulphide mineral. Jurnal Geomine, Vol. 6, No. 2 Agustus 201850 PENDAHULUAN Saat ini kebutuhan logam dasar dan logam mulia di Indonesia semakin meningkat.. Pemanfaatannya yang semakin meningkat menuntut adanya eksploitasi akan sumberdaya mineral, khususnya logam mulia dan logam dasar Rosana dkk, 2011. Kelurahan Poboya merupakan salah satu lokasi penambangan emas tradisional yang beroperasi sejak tahun 2009 hingga sekarang. Merkuri digunakan untuk memisahkan emas dengan pasir, sehingga masyarakat Poboya dan sekitarnya berpotensi terkena dampak dari penggunaan merkuri. Badan Lingkungan Hidup Kota Palu, tahun 2011 jumlah penambang emas di tambang rakyat tersebut mencapai 5000 orang dan jumlah tromol berkisar unit, dimana setiap unit menggunakan merkuri 0,5 kilogram per hari dan 20% mercuri terserap oleh tanah dan berpotensi sebagai sumber pencemar baik udara, air dan tanah Albasar, 2015. Pengolahan emas menggunakan merkuri di Kelurahan Poboya Kabupaten Donggala Palu Provinsi Sulawesi Tengah menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar, salah satunya yaitu timbulnya air asam tambang. Oleh karena itu, penelitian ini bertujuan untuk mengetahui mineral sulfida yang dapat memicu pembentukan air asam tambang dan unsur maupun senyawa yang terdapat pada air asam tambang. METODOLOGI Alat dan Bahan Metode yang digunakan dalam penelitian ini yaitu menggunakan analisis mineralogi dengan menggunakan alat XRD-7000 Shimadzu dan analisis geokimia menggunakan XRF EDX-720 Shimadzu di Laboratorium Analisis dan Pengolahan Bahan Galian Universitas Hasanuddin dan alat AAS Atomic Absorption Spectrophotometer di Balai Besar Laboratorium Kesehatan BBLK Kota Makassar. Sampel diambil dari wilayah pertambangan rakyat di Kelurahan Poboya Kabupaten Donggala Provinsi Sulawesi Tengah yang merupakan limbah hasil pengolahan emas menggunakan sistem amalgamasi yang telah disimpan pada tempat penampungan limbah yang berbeda. Tahap Pengambilan Data Pengambilan data dilakukan survei lapangan meliputi pengumpulan data dan informasi di daerah penambangan dan pengolahan emas. Pengambilan data geokimia dilakukan dengan pengambilan sampel dari beberapa lokasi dengan menggunakan GPS untuk mengetahui koordinat lokasi sampling. Proses pengambilan sampel tailingmenggunakan sekop untuk memasukkan sampel ke dalam kantong Analisis Data Pada tahap ini dilakukan untuk mengetahui mineral secara kuantitatif maupun kualitatif dan unsur serta senyawa yang berpotensi menimbulkan air asam tambang. HASIL DAN PEMBAHASAN Hasil Uji XRD Pengujian XRD bertujuan untuk mengetahui kandungan mineral sulfida yang terkandung di setiap sampel Setiabudi, 2012. Berikut ini hasil uji XRD pada sampel limbah pengolahan emas. Tabel 1. Kandungan mineral sampel menggunakan XRD. Jurnal Geomine, Vol. 6, No. 2 Agustus 201851 Gbr 1. Pola difraksi hasil uji XRD sampeln1. Gbr 2. Pola difraksi hasil uji XRD sampelk2. Hasil Uji XRF Pengujian XRF bertujuan untuk mengetahui jenis senyawa oksida dan unsur-unsur kimia yang terkandung di setiap sampel. Berikut ini hasil uji XRF pada sampel limbah pengolahan emas. Tabel 2. Hasil kuantitatif senyawa oksida uji XRF. Hasil Uji AAS Pengujian ini bertujuan untuk mengetahui unsur-unsur kimia dan kandungan logam berat yang memicu terbentuknya air asam tambang. Hasil pengujian ini kemudian langsung terbaca oleh komputer yang dapat dilihat pada tabel 3. Tabel 3. Hasil pengujian unsur logam berat menggunakan AAS. Pembahasan Berdasarkan hasil pengujian menggunakan alat XRD, XRF dan AAS menunjukan adanya perbedaan karakteristik pada setiap sampel. Karakteristik tersebut diuji melalui analisis minerologi dan geokimia sebagai berikut. Jurnal Geomine, Vol. 6, No. 2 Agustus 201852 Analisis Mineralogi Sampel Pada hasil uji XRD, diterangkan bahwa semua sampel uji didominasi oleh mineral kuarsa SiO2, hal ini disebabkan karena mineral kuarsa sebagai mineral yang paling sering dijumpai sebagai penyusun kerak bumi. Mineral kuarsa yang terdeteksi pada sampel 1 hasil uji XRD memiliki peak dengan sudut 2θ 26,78° dan intensitas 1000,0Å. Pada sampel 1 juga terdeteksi mineral melanterit dengan sudut 2θ 18,11° dan intensitas 24,5Å dan rambergit dengan sudut 2θ 25,77° dan intensitas 62,2Å seperti yang ditunjukkan pada gambar 1. Berdasarkan karakteristik mineralogi sampel 1 terdapat mineral yang dominan yaitu kuarsa, pada hasil pengujian XRD menunjukan mineral ini memiliki sistem kristal trigonal, unit cella=4,9140Å dan c=5,4060Å, serta densitas 2,648gr/cm3. Kehadiran kuarsa yang melimpah membuktikan bahwa batuan dasar dari sampel 1 berasal dari tipe endapan epitermal Maulana, 2017. Pada sampel 1 juga terdeteksi mineral sulfida yaitu rambergit, pada hasil uji XRD menunjukan mineral ini memiliki sistem kristal heksagonal, unit cell a=3,8920Å dan c=6,4450Å, serta densitas 3,266gr/cm3. Pada sampel 1 juga terdapat mineral sekunder hasil pelapukan mineral sulfida yaitu melanterit, pada hasil uji XRD melanterit memiliki sistem kristal monoklin dengan unit cell a=14,1000Å, b=6,5180Å dan c=10,8860Å, serta densitas 1,955gr/cm3. Mineral kuarsa yang terdeteksi pada sampel 2 hasil uji XRD memiliki peak dengan sudut 2θ 26,78° dan intensitas 1000,0Å. Pada sampel 2 juga terdeteksi mineral kalsit dengan sudut 2θ 29,64° dan intensitas 124,9Å, retgersit dengan sudut 2θ 20,95° dan intensitas 195,9Å, dan Violarit dengan sudut 2θ 31,44° dan intensitas 11,6Å seperti yang ditunjukkan pada gambar 2 Berdasarkan karakteristik mineralogi sampel 2 pada gambar 2 yang merupakan limbah pengolahan yang relatif masih memperlihatkan kemiripan karakteristik dengan sampel 1, hal ini dapat terlihat dari keterdapatan kuarsa, mineral sulfida, dan mineral sekunder hasil pelapukan mineral sulfida, namun jenis mineral sulfida yang terdeteksi berbeda dengan sampel 1. Kuarsa yang terdeteksi pada sampel 2 memiliki sistem kristal trigonal, unit cell a=4,9124Å dan c=5,4039Å, serta densitas 2,649gr/cm3. Pada sampel 2 juga terdeteksi mineral sulfida yaitu violarit, pada hasil uji XRD menunjukan mineral ini memiliki sistem kristal isometrik dengan unit cell a=9,4621Å, serta densitas 4,735gr/cm3. Pada sampel 2 juga terdapat mineral sekunder hasil pelapukan mineral sulfida yaitu retgersit, pada hasil uji XRD mineral ini memiliki sistem kristal tetragonal dengan unit cella=6,7803Å dan c=18,2880Å, serta densitas 1,981gr/cm3. Pada sampel 2 juga terdapat mineral karbonat yaitu kalsit. Pada hasil pengujian XRD menunjukan kalsit memiliki sistem kristal trigonal, unit cella=4,9910Å dan c=17,0680Å, serta densitas 2,708gr/cm3. Analisis Geokimia Sampel Berdasarkan hasil uji geokimia sampel limbah pengolahan emas, pada pengujian XRF terhadap sampel 1 menghasilkan 21 unsur yang terdeteksi, dan sampel 2 terdeteksi 19 unsur tabel 2. Berdasarkan jumlah elemen yang terdeteksi pada hasil uji XRF sebagian besar elemen utama terdeteksi juga oleh pengujian XRD. Geokimia sampel penelitian ini diketahui melalui analisis XRF dan AAS, sampel pada daerah penelitian berasal dari dua jenis limbah yang berbeda akan menghasilkan karakteristik geokimia yang juga berbeda. Pengujian XRF berguna untuk mengetahui unsur dan mineral yang teroksidasi pada sampel. Pada kedua sampel terdeteksi SiO₂. hal ini terjadi karena kuarsa merupakan mineral paling banyak ditemukan pada kerak bumi. Terdeteksinya Al₂O₃ yang juga melimpah. Dari semua sampel uji juga terdapat senyawa Fe₂O₃ yang merupakan mineral hasil sisa oksidasi. Al₂O₃ dan Fe₂O₃ merupakan dua senyawa yang dapat menghasilkan logam didalam air asam tambang Sayoga, 2014. Beberapa unsur yang terdeteksi seperti arsen, mangan, tembaga dan besi akan berpengaruh terhadap perolehan emas bila dilindi dengan sianida Li, et Jurnal Geomine, Vol. 6, No. 2 Agustus 201853 al., 2010. Air asam tambang mengandung banyak unsur logam beracun berbahaya yang menyebar ke lingkungan sekitar dapat terjadi secara alami maupun sebagai akibat kegiatan pertambangan. Dispersi logam yang terjadi secara alami akan membentuk rona awal kandungan logam di daerah sekitar tubuh bijih yang tinggi, yaitu diatas rata-rata pada kerak bumi Wahyudi, et al., 2014. Kegiatan penambangan akan cenderung memicu proses pembentukan air asam tambang berlangsung menjadi lebih intensif. Pada semua sampel terdapat unsur Fe dan S yang apabila berikatan dapat membentuk mineral sulfida yang sangat reaktif membentuk asam seperti pirit. Air asam tambang mengandung banyak unsur logam beracun berbahaya yang menyebar ke lingkungan sekitar dapat terjadi secara alami maupun akibat kegiatan pertambangan. Kegiatan penambangan akan cenderung memicu proses pembentukan air asam tambang berlangsung menjadi lebih intensif. Pada tabel 4 dapat dilihat hasil pengujian geokimia dengan menggunakan metode AAS, semua sampel terdeteksi unsur logam berat yang sering ditemukan pada air asam tambang yang telah melewati batas berdasarkan nilai ambang batas logam berat pada sedimen atau tanah oleh Badan Standarisasi Nasional SNI tahun 2004. Tabel 4. Hasil pengujian logam berat yang pada umumnya terdapat pada air asam tambang. Nilai Ambang Batas ug/g KESIMPULAN Berdasarkan hasil penelitian dapat disimpulkan bahwa limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. UCAPAN TERIMA KASIH Peneliti mengucapkan terima kasih kepada Kepala Laboratorium Analisis dan Pengolahan Bahan Galian Universitas Hasanuddin, Balai Besar Laboratorium Kesehatan BBLK Makassar dan Jurusan Teknik Pertambangan Fakultas Teknologi Industri Universitas Muslim Indonesia. DAFTAR PUSTAKA Albasar, Daud Anwar dan Maria 2015. Pajanan Merkuri Hg Pada Masyarakat Di Kelurahan Poboya Kota Palsulawesi Tengah. Skripsi. Universitas Hasanuddin. Li, Y. Jian, L. & Guan, W. 2010. Cyanidation Of Gold Clayore Containing Arsenic And Manganese. Issue, 2 17, 132-135. Maulana, A. 2017, Endapan Mineral. Yogyakarta Penerbit Ombak, Rosana, dkk. 2011. Mineralisasi Emas Epitermal Di Daerah Sako Merah Dan Manau, Ilmu-ilmu Hayati dan Fisik, 13 2, 235-247. Sayoga, R. 2014. Air Asam Penerbit ITB. Setiabudi, A. Hardian, R. dan Mudzakir, A. 2012. Karakterisasi Material Prinsip dan Aplikasinya dalam Penelitian UPI Press. Wahyudi, T. Tahli, L. dan Autanto, A. 2014. Karakterisasi Mineralogi Fisika Kimia Limbah Pegolahan Emas. Bandung Tekmira. ... Saat ini kebutuhan logam dasar dan logam mulia di Indonesia semakin meningkat. Pemanfaatannya yang semakin meningkat menuntut adanya eksploitasi akan sumberdaya mineral, khususnya logam mulia dan logam dasar Kilian, Abdullah, 2018. Usaha pertambangan, oleh sebagian masyarakat sering dianggap sebagai penyebab kerusakan dan pencemaran lingkungan. ...The mining and processing of people's gold produces impacts on the surrounding environment. Some residents immediately dumped the waste gold processing results into the environment. It is necessary to analyze the actual condition of mercury pollution based on a map of the level of pollution vulnerability to determine the size of the level of difficulty and the ease of polluted substances to affect surface water quality. The purpose of this study is to analyze the actual condition of the level of vulnerability of surface water pollution around the study area. The method used in this study is a survey method and field mapping, sampling methods purposive sampling, laboratory analysis methods, mathematical methods, and descriptive evaluation methods. Calculation of the level of vulnerability of surface water is the PCSM Point Count System Model method with 3 parameters, namely land use, slope, and rainfall. Overlay is done between the level of pollution vulnerability map with the actual conditions of pollution in the field. The results showed the study area has a level of vulnerability to surface water pollution in the study area including the classification of quite vulnerable and very vulnerable. Based on the results of the study it can be concluded that the total score of 36-43 included in the vulnerability class is quite vulnerable. The total score of 43 - 50 is included in the very vulnerable vulnerability class. Actual mercury levels in the study area were known in a row AP1-AP6 samples were 0,00046 mg / L; < mg / L; < mg / L; < mg / L; 0,00039 mg / L and <0,00006 mg / L. These results indicate that surface water in the study area has not been contaminated with mercury because its value is brought to all quality ÂEdy NursantoAfroza PratiwiEddy WinarnoRiria Zendy MirahatiBased on petrographic data, XRD, and fluid inclusions, it was interpreted that the quartz veins associated with low sulfide in Karangsambung area underwent 2 stages of system change from mesothermal system to epithermal system. This means showing the mineral potential contained in material, including on the Luk Ulo River where alluvial deposits are present. Therefore, what needs to be done next is to determine the composition of the material of the alluvial material in the Luk Ulo River, Kebakalan Village using XRD, and AAS so that its potential is known. This research is limited to mineral potential in XRD and AAS Au, Ag, and Cu in 2 samples, A sand and B rock. XRD results on samples A and B showed that quartz SiO2 had the highest percentage 30-50% compared to other minerals. While the results of the AAS tests showed that the highest Au and Ag contents were in sample B and Cu in sample A with total of g/ton Au, g/ton Ag, and g/ton Cu. Meanwhile, the lowest total Au and Ag were in sample A and Cu was in sample B which amounted to Au g/ton, Ag g/ton, and Cu g/ton. Yuliang LiJian LiuWei-sheng GuanThe extraction process of gold and silver from the gold clay ore containing arsenic and manganese was investigated. With the conventional technique, the leaching rates of gold and silver are and respectively. To eliminate the negative effects of arsenic and manganese on cyanidation and increase the gold and silver leaching rates, a novel catalyst was added. The content of the catalyst used in the process was 8 g per 500 g org sample, the sample size was 60 μm and the pH value was kept between 10 and 11. Leaching with the catalyst for 3–5 h under certain conditions, the gold leaching rate increased to over 90% and the silver leaching rate increased to 80%–90%. The catalyst can effectively liberate gold and silver from the enclosure of arsenic and manganese and the industrial experiment has great significance to the development and utilization of the gold clay ore containing arsenic and manganese. Keywordsgold ore-cyanidation-catalyst-gold-silver-leaching rateMineralisasi Emas Epitermal Di Daerah Sako Merah Dan ManauM F RosanaDkkRosana, dkk. 2011. Mineralisasi Emas Epitermal Di Daerah Sako Merah Dan Manau, Jambi. Bionatura-Jurnal Ilmu-ilmuR SayogaSayoga, R. 2014. Air Asam Tambang. Bandung Penerbit Material Prinsip dan Aplikasinya dalam Penelitian KimiaA SetiabudiR HardianA MudzakirSetiabudi, A. Hardian, R. dan Mudzakir, A. 2012. Karakterisasi Material Prinsip dan Aplikasinya dalam Penelitian Kimia. Bandung UPI Mineralogi Fisika Kimia Limbah Pegolahan EmasT WahyudiL TahliA AutantoWahyudi, T. Tahli, L. dan Autanto, A. 2014. Karakterisasi Mineralogi Fisika Kimia Limbah Pegolahan Emas. Bandung Tekmira.
antara3-5 dan memiliki kadar logam berat terlarut yang tinggi. Dalam penanganan air asam tambang sudah mendapatkan penanganan secara khusus, dikarenakan peraturan pemerintah yang mengatur tentang baku mutu air yang akan dialirkan ke sungai. Dari sisi jumlah, limbah cair yang dihasilkan pada air asam tambang umumnya relatif sedikit. Bagaimana cara yang tepat untuk menangani limbah pertambangan? Industri tambang di Indonesia memang mendukung perekonomian negara secara signifikan. Dalam mineral potential index, Indonesia bahkan berada di posisi yang strategis menjadi penyumbang timah terbesar, berada di urutan kedua untuk tembaga, dan urutan ketiga untuk nikel. Pertambangan juga berkontribusi besar dalam ekspor hingga pembentukan PDB Pendapatan Domestik Bruto. Industri tambang menyumbang sekitar 7,2% PDB Indonesia pada tahun balik segala keuntungan tersebut, nyatanya sektor pertambangan pun memiliki beberapa tantangan. Salah satunya adalah masalah limbah. Di beberapa wilayah dunia, seperti benua Eropa, limbah pertambangan bahkan merupakan penyebab utama pencemaran air. Hal ini tentu dapat membahayakan keselamatan makhluk hidup, terutama yang berada di sekitar daerah bahkan dapat menghadapi risiko yang lebih besar jika pengolahan limbah pertambangan tidak dilakukan secara serius. Pasalnya, ada banyak sekali daerah di Indonesia yang menjadi daerah tambang. Beragam jenis mineral pun ada di Indonesia, mulai dari timah, tembaga, nikel, bahkan emas sekalipun ada. Tambang yang aktif beroperasi pun masih banyak kali ini akan membahas tentang dampak limbah pertambangan serta cara menanganinya dengan tepat agar tidak membahayakan lingkungan. Mari simak Juga Limbah Industri Jenis, Dampak, dan Cara MengolahnyaApa itu limbah pertambangan?Sebelum lebih jauh membahas tentang cara penanganan, sebenarnya apa yang dimaksud dengan limbah pertambangan? Ini merupakan jenis limbah yang berasal dari penggalian tanah, limpasan hujan dan pengolahan pabrik pertambangan. Limbah pertambangan bisa berupa lapisan tanah yang menutupi mineral yang dipindahkan untuk bisa mendapat akses ke sumber daya mineral, hingga batuan sisa dan juga tailing yang muncul setelah proses ekstraksi mineral berharga.Limbah ini mengandung zat berbahaya dalam jumlah besar, seperti logam berat. Ekstraksi serta pemrosesan logam dan senyawa logam dapat menyebabkan drainase asam atau aktivitas pertambangan emas bisa menimbulkan limbah pertambangan yang mengandung arsenik, timbal, dan merkuri dengan konsentrasi tinggi. Padahal, arsenik dalam konsentrasi tinggi dapat menimbulkan keracunan yang berujung itu, pengelolaan tailing pun sangat berisiko dan sering kali menghasilkan sisa bahan kimia berbahaya dan peningkatan kadar logam. Tailing sering dikelola dengan metode konvensional menggunakan sedimen pond. Metode ini memungkinkan terjadinya peluapan overflow berlebih seiring semakin banyaknya lumpur yang datang sehingga menimbulkan kontaminasi terhadap lingkungan dan dampak panjang pada kesehatan manusia dan limbah tambang dengan benar akan memastikan keberlangsungan produksi pengolahan tambang dan mencegah terjadinya pencemaran terhadap lingkungan. Dengan begitu, polusi air dan tanah yang timbul dari drainase asam atau basa dan pencucian logam berat pun dapat diminimalkan atau bahkan cair sebagai Limbah Tambang DominanJika melihat sifat zat, maka limbah pertambangan dikelompokkan dalam tiga kategori, yakni limbah cair, limbah padat, dan limbah pertambangan cair biasanya muncul akibat proses pencucian hasil tambang. Proses tambang yang panjang kemungkinan besar akan menghasilkan limbah cair dengan tingkat kontaminasi yang berbeda. Air yang sudah terpapar berbagai proses penambangan biasanya bersifat asam dan dapat mencemari sumber air di lokasi tambang, pencampuran output ini dengan padatan disebut dengan lumpur sludge. Lumpur punya nilai ekonomi yang sangat kecil sehingga ditangani sebagai limbah. Jika lumpur memiliki bahan berbahaya atau radioaktif, dapat diklasifikasikan sebagai limbah berbahaya. Ini akan memerlukan metode penanganan dan pembuangan cair terkadang dikelompokkan dalam dua kategori berbeda, yaitu menurut Total Dissolved Solid logam terlarut dan Total Suspended Solid padatan tersuspensi. TSS dan TDS mengukur jumlah partikel potongan kecil benda yang mengambang di air. Di danau dan sungai, hal ini dapat mencakup partikel dari ganggang, bahan organik lainnya, tanah liat, dan zat anorganik lainnya seperti mineral, garam dan logam. TSS adalah partikel yang cukup besar untuk ditahan oleh filter, sedangkan TDS adalah partikel yang dapat melewati sering dikaitkan dengan kekeruhan air. Jika TSS tinggi dan air keruh, maka cahaya matahari tidak akan merambat dengan baik melalui air, sehingga tanaman dan ganggang sulit tumbuh. Itu berarti, produktivitas dan produksi oksigen dalam air rendah. Dalam konteks limbah pertambangan, kondisi ini terjadi saat air mengandung terlalu banyak tanah dan lumpur yang membuat organisme di dalamnya tidak itu, TDS menyoroti mineral terlarut dan garam dalam air. Akibatnya, TDS sering kali berhubungan erat dengan ukuran konduktivitas, salinitas, alkalinitas, dan tingkat kekerasan. Sebagian besar ikan air tawar tidak dapat menoleransi TDS tinggi karena organ mereka tidak dapat beradaptasi dengan air asin, seperti ikan Juga Landfill Definisi, Jenis, Material, dan Prosedur PembuatannyaDampak limbah pertambanganLimbah pertambangan menimbulkan dampak negatif yang begitu besar, baik itu berupa kerusakan lingkungan dan bahaya kesehatan manusia. Banyak operasi pertambangan menyimpan limbah atau tailing dalam jumlah besar di lokasi. Sisa batu dan tanah dapat berubah menjadi tailing, yang sering kali bersifat asam dan mengandung arsenik, merkuri, dan zat beracun lain dengan konsentrasi adalah beberapa dampak negatif limbah pertambangan1. Pencemaran lingkunganLimbah pertambangan dapat mencemari lingkungan hidup. Terlebih, pertambangan menghasilkan limbah yang beragam, mulai dari zat cair, padat, dan bahkan gas. Dengan kata lain, limbah tambang memiliki potensi bahaya yang begitu cair akan mengotori sumber mata air, sungai, dan laut. Dampak yang paling terlihat, air akan tampak keruh dan bahkan mengeluarkan bau tidak sedap. Otomatis, organisme yang hidup di dalamnya pun akan terancam. Air yang semula dapat dimanfaatkan untuk menyokong kehidupan pun kini hanya menjadi juga dengan limbah padat yang akan mengubah kontur tanah. Aktivitas pertambangan akan membuat lahan yang semula normal menjadi berlubang. Lubang-lubang ini saat terisi air akan sangat berbahaya. Sebab, air dalam lubang tersebut akan memiliki kandungan asam tinggi. Jika konsentrasi asam terlalu tinggi, maka area di sekitarnya pun akan sulit ditumbuhi tanaman karena tingkat kesuburan tanah Mengancam kehidupan hewan di sekitarnyaDi saat limbah pertambangan merusak lingkungan, otomatis kehidupan hewan yang hidup di dalamnya pun akan terganggu. Hewan-hewan kecil akan mati karena habitatnya berubah. Hal ini kemudian akan merusak rantai makanan secara contoh limbah cair pertambangan yang mencemari sungai. Limbah ini akan membunuh ikan dan organisme lain. Hewan pemangsa ikan sungai pun akan kesulitan mendapat makan hingga akhirnya mati kelaparan. Jika kondisi terus berlanjut, maka predator pun ikut kesulitan mencari mangsa, mengakibatkan keseluruhan rantai makanan di habitat tersebut Membahayakan nyawa manusiaTidak hanya lingkungan alam dan hewan, manusia pun bisa menerima dampak negatif limbah pertambangan. Bagaimana tidak, lingkungan adalah penyokong utama kehidupan manusia. Tanpa lingkungan yang lestari, maka manusia akan sulit untuk hidup warga Desa A terbiasa menggunakan sungai C untuk aktivitas sehari-hari, mulai dari memasak, mencuci, hingga mandi. Saat kemudian di dekat Desa A dilakukan aktivitas pertambangan yang membuang limbahnya di sungai C, maka warga desa A pun tidak bisa lagi melakukan aktivitas seperti biasa. Mereka terpaksa harus bergantung pada sumber daya lain dari luar satu jenis penyakit yang sering ditemukan pada pekerja tambang adalah pneumoconiosis yang menyerang organ paru-paru. Penderitanya akan sering merasa sesak napas, mudah lelah, bahkan gagal napas. Penyakit ini muncul akibat paparan langsung terhadap zat kimia berbahaya dalam tambang, seperti silica dan asbestos. Data dari Kementerian Kesehatan menyebutkan bahwa sekitar 9% dari pekerja tambang Indonesia menderita pneumoconiosis hanya mengganggu kerja paru-paru, limbah pertambangan juga bisa menyebabkan kanker kulit. Hal ini bisa terjadi pada aktivitas pertambangan yang menghasilkan belerang, asam sulfat, mangan, dan merkuri. Sebab, zat-zat tersebut masuk dalam kelompok logam berat yang dapat merusak jaringan kulit pengelolaan dan pengolahan limbah pertambanganIndonesia sendiri sudah memiliki peraturan mengenai pengelolaan dan pengolahan limbah pertambangan. Bahkan negara telah mengatur ketentuan mengenai aktivitas pascatambang agar wilayah bekas tambang bisa segera garis besar, ketentuan mengenai pengelolaan dan pengolahan limbah pertambangan telah tertuang dalam Peraturan Menteri Energi dan Sumber Daya Mineral Permen ESDM Nomor 7 Tahun 2020 tentang Tata Cara Pemberian Wilayah, Perizinan, dan Pelaporan pada Kegiatan Usaha Pertambangan Mineral dan ini menyebutkan bahwa salah satu aspek yang dilihat dalam penerbitan izin tambang adalah masalah pengelolaan dan pengolahan limbah. Apabila perusahaan tambang tidak dapat membuktikan metode pengolahan limbahnya, maka Izin Usaha Pertambangan IUP tidak akan itu, pemerintah juga telah mengatur tentang aktivitas pasca tambang melalui Peraturan Pemerintah PP Nomor 78 Tahun 2010 tentang Reklamasi dan Pasca Tambang. Peraturan ini berisi ketentuan yang wajib dijalankan oleh para pelaku kegiatan tambang setelah aktivitas tambang berakhir. Dengan begitu, lahan yang ditinggalkan bisa tetap dimanfaatkan dengan aman tanpa membahayakan keselamatan dan cara mengolah limbah pertambangan?Melihat bahaya limbah pertambangan, maka proses pengelolaan dan pengolahannya harus dilakukan dengan sangat hati-hati. Ada beberapa cara yang bisa dilakukan untuk mengolah limbah tambang dengan dampak seminimal mungkin, berikut adalah beberapa di pH adjusterSeperti yang telah disebutkan sebelumnya, aktivitas tambang akan menghasilkan lubang-lubang dalam yang nantinya terisi air saat musim hujan tiba. Sayangnya, air yang tertampung dalam lubang tersebut berbahaya untuk digunakan dan bahkan tidak bisa ditinggali organisme apapun karena mengandung asam yang sangat mengatasi permasalahan tersebut, bisa diterapkan sebuah metode yang disebut sebagai pH adjuster pengatur pH. Sebenarnya, ini merupakan bahan kimia yang digunakan untuk mengubah kadar pH atau potential hydrogen. Nah, pH sendiri adalah pengukuran aktivitas ion hidrogen yang akan menentukan seberapa basa atau asam suatu menambahkan reagen pH seperti asam, maka Anda dapat menurunkan kadar pH. Sementara itu, untuk menaikkan pH, Anda bisa menggunakan zat kaustik atau alkali lainnya. Kisaran pH tipikal adalah 0-14, tetapi tingkat pH aktual dapat melebihi batas sulfat dan natrium hidroksida kaustik paling sering digunakan untuk menetralkan asam atau basa. Penyesuaian basa harus dilakukan secara hati-hati karena semakin besar aplikasinya, maka semakin banyak panas yang dihasilkan. Tiap air di lubang tambang pun belum tentu memiliki kadar asam yang sama sehingga penyesuaian pH harus melalui pengukuran detail terlebih Sumur dalamSumur dalam atau deep well injection merupakan salah satu metode untuk membuang limbah tambang. Caranya adalah dengan membuat saluran khusus untuk membuang limbah ke lapisan tanah dalam agar tidak mengganggu lapisan tanah dangkal. Kedalaman sumur harus diperhitungkan dengan cermat agar tidak mencemari tanah dan air melakukan perhitungan kedalaman, juga harus memperhatikan material yang digunakan untuk melapisi permukaan sumur. Tanpa material yang berkualitas, dikhawatirkan limbah yang dibuang akan merembes atau bahkan bocor hingga mencemari lapisan tanah di bisa mempertimbangkan geopipe, pipa polimer khusus yang dapat digunakan dalam drainase cairan maupun gas termasuk pengumpulan lindi atau gas di tempat pembuangan akhir. Geopipe menjadi solusi pembuatan sumur dalam karena memiliki lapisan filter geotextile untuk mencegah terjadinya rembesan atau material geopipe berkualitas, Anda dapat mengandalkan Geosinindo. Geopipe terbuat dari material berkualitas dengan instalasi yang mudah, memiliki kekuatan beban eksternal tinggi, fleksibel, dan tahan Secure landfillSelain kedua metode di atas, pengolahan limbah pertambangan juga bisa menggunakan metode secure landfill. Ini merupakan fasilitas pembuangan limbah berbahaya yang ditempatkan di dalam atau di atas tanah, dirancang untuk mencegah pencemaran yang disebabkan oleh aktivitas pertambangan. Kedalaman minimal secure landfill adalah sekitar 3 secure landfill dapat bekerja secara efektif, maka permukaannya harus dilapisi dengan material khusus. Dengan begitu, limbah tambang yang ditampung di dalamnya tidak akan bocor hingga mencemari lingkungan di satu material yang bisa digunakan adalah geomembrane. Ini merupakan material pelapis sintetik dengan tingkat permeabilitas kemampuan suatu material untuk meloloskan partikel tertentu yang sangat rendah. Geomembrane memang umum digunakan dalam proyek rekayasa geoteknik yang mengontrol migrasi cairan. Biasanya, geomembrane terbuat dari lembaran polimer yang relatif secure landfill tidak mudah bocor dan rusak, gunakanlah material berlapis berkualitas. Geomembrane dari Geosinindo memiliki tingkat permeabilitas yang sangat rendah. Dengan biaya terjangkau, material ini memiliki ketahanan yang begitu baik terhadap zat kimia. Bukan hanya itu, geomembrane Geosinindo juga tahan terhadap paparan UV dan mampu bertahan dalam kondisi cuaca yang Juga Yuk, Pahami Manfaat Dewatering dan Metodenya! 4. Sludge DewateringBerbicara tentang pengolahan limbah cair, sedikit banyak akan menyinggung tentang bagaimana memisahkan air dari pengotor-pengotornya. Pelaku pengotor paling dominan yang membuat air tersebut menjadi keruh adalah padatan baik yang terlarut maupun yang melayang dan mengendap. Proses untuk pemisahan antara padatan pengotor dan airnya dinamakan ini membuat kandungan padatan pada lumpur menjadi lebih besar dan kandungan air lebih sedikit sehingga memudahkan dalam penanganan pembuangan lumpur pada disposal area. Proses ini juga meringankan beban pekerjaan unit water treatment sehingga efisien. Manajemen lumpur yang kurang baik mengakibatkan terjadinya penumpukan sedimen pada pond sehingga memungkinkan terjadinya pengurangan kapasitas tampung volume desain. Apabila itu terjadi, resiko overflow peluapan air pun terjadi membanjiri sekitar banyak teknologi sludge dewatering yang tersedia, teknologi berbasis mekanik seperti belt press, screw press dan filter press. Namun Limbah tambang membutuhkan teknologi dengan kapasitas besar, minim mekanik, minim maintenance dan praktis aplikasinya. D-sludge tube dewatering system mengakomodir semua kebutuhan ini mengintegrasikan kemampuan mekanik dari tekanan pompa, kemampuan bahan kimia polimer untuk mengkondisikan lumpur agar menjadi gumpalan besar dan kemampuan material geotextile polypropilen sebagai filtrasi, material tersebut didesain khusus untuk dewatering karena selain memiliki kuat tarik dan jahitan yang tinggi, material ini memiliki daya permeabilitas yang tinggi dengan porositas yang disesuaikan dengan kebutuhan. Geosinindo melalui anak perusahaannya PT Geoteknika Adhiyasa menyediakan jasa dewatering lumpur sebagai sebuah sistem, mulai dari penyediaan/pemasangan material d-sludge tube, pemasangan unit polimer dissolver dan operasional sini, dapat disimpulkan bahwa limbah pertambangan dapat menimbulkan dampak yang berbahaya bagi lingkungan, bahkan membahayakan keselamatan manusia. Pengelolaan dan pengolahan limbah tambang harus dilakukan secara teliti dan hati-hati agar tidak menimbulkan masalah baru, seperti kebocoran zat kimia karenanya, pelaku industri tambang diwajibkan untuk melakukan pengelolaan dan pengolahan limbah secara optimal. Aktivitas pengolahan limbah pertambangan pun harus dilakukan mengikuti ketentuan dari pemerintah untuk meminimalkan dampak beberapa metode yang bisa dilakukan untuk mengelola dan mengolah limbah secara aman. Beberapa di antaranya adalah menggunakan pH adjuster, deep well injection, secure landfil dan sludge dewatering. Dalam menjalankan proses pengelolaan limbah tambang, Anda juga harus menggunakan peralatan dan material yang yang berencana untuk mengelola limbah tambang dengan sludge dewatering, Anda bisa menggunakan material berkualitas buatan Geosinindo. Seluruh material dari Geosinindo telah diuji di Laboratorium Terakreditasi GAI-LAP untuk memastikan agar spesifikasinya sesuai dan dapat hanya itu, Geosinindo juga menyediakan layanan konsultasi yang akan membantu Anda dalam mendesain dan membangun fasilitas pengelolaan limbah pertambangan sesuai dengan standar dan kebutuhan Anda. Untuk informasi lebih lanjut mengenai material berkualitas dari Geosinindo, silakan hubungi kami di sini!

Rencanaeksploitasi tambang emas oleh PT Sumber Mineral Nusantara (SMN), membuat para pihak resah. Kalangan organisasi masyarakat sipil mengingatkan, daya rusak mengerikan bakal muncul kala pertambangan emas mengeksploitasi kawasan karst Trenggalek. Mereka pun meminta pemerintah mengevaluasi dan cabut izin tambang itu. Mukti Satiti, dari

Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas. Indonesia memiliki berbagai macam bahan tambang yang terdapat di berbagai daerah. Minyak bumi, gas alam, emas, batubara, bijih besi, dan aspal merupakan jenis-jenis bahan tambang yang dimiliki oleh Indonesia. Salah satu jenis bahan tambang yang cukup banyak dan tersebar ketersediaannya di Indonesia adalah emas. Emas merupakan salah satu jenis bahan tambang yang memiliki nilai ekonomis sangat tinggi. Emas hampir dipasarkan dan diperdagangkan hampir di semua pasar perdagangan bahan tambang di seluruh dunia. Nilai investasi emas meningkat setiap terjadi perdagangan emas dalam jumlah yang cukup besar. Bahkan, jika dilihat lebih jauh lagi, emas memberikan kontribusi berupa devisa yang sangat besar bagi negara-negara pengekspor emas. Emas tidak terdapat di lapisan tanah yang cukup dalam dari permukaan bumi atau permukaan tanah. Bisa dikatakan bahwa bahan tambang jenis ini terletak di permukaan tanah, daerah aliran sungai yang berisi endapan-endapan mineral, bahkan di daerah hilir sungai yang merupakan akhir dari arah aliran air sungai yang mungkin saja menjadi tempat berkumpulnya arah aliran beberapa sungai yang membawa endapan-endapan mineral. Emas merupakan salah satu jenis mineral yang memiliki banyak manfaat. Jenis mineral ini dapat digunakan sebagai bahan konduktor pengantar panas di beberapa jenis alat elektronik. Namun, kegunaan emas yang utama adalah sebagai bahan perhiasan berupa kalung, emas, cincin, dan lain sebagainya. Jadi, secara garis besar, emas memiliki berbagai manfaat untuk kehidupan manusia. Untuk mendapatkan emas yang terletak di permukaan tanah ataupun yang terletak di daerah aliran sungai tidaklah terlalu sulit. Pencariannya hanya mempergunakan alat-alat yang sederhana. Teknik pencarian dan pengolahan limbahnya sangat sederhana. Namun, untuk mendapatkan emas yang terdapat di dalam lapisan tanah dengan kedalaman tertentu, pencarian emas perlu dipergunakan alat-alat teknologi dan teknik pencarian yang cukup sulit. Survey lokasi merupakan salah satu kegiatan awal yang diperlukan untuk mengetahui jumlah ketersediaan emas, posisi atau letak emas, dan kedalaman emas dari permukaan tanah. Daerah yang memiliki banyak ketersediaan emas tentu saja harus menjadi basis atau sumber pencarian dan pengolahan limbah hasil eksplorasi emas. Daerah-daerah inilah yang kemudian menjadi daerah-daerah tambang emas yang mungkin saja alam dan lingkungannya dapat rusak karena adanya kegiatan penambangan emas ini. [caption id="attachment_275196" align="alignleft" width="298" caption="Ilustrasi-Tambang Emas/Admin Indonesia memiliki banyak tambang emas yang tersebar mulai dari Pulau Sumatra, Pulau Jawa, Pulau Kalimantan, dan Papua. Cadangan emas di Indonesia cukup besar. Ini dapat dilihat dari jumlah tersebarnya daerah tambang-tambang emas di Indonesia. Salah satu daerah tambang emas dengan jumlah kandungan emas yang sangat besar terletak di daerah Pegunungan Jayawijaya yang terletak di Provinsi Papua Barat. Derah ini hanya memiliki satu tempat tambang emas, yaitu tambang emas Grasberg. Tambang Grasberg adalah tambang emas terbesar di dunia dan tambang tembaga ketiga terbesar di dunia. Tambang ini terletak di provinsi Papua di Indonesia dekat latitude -4,053 dan longitude 137,116, dan dimiliki oleh Freeport yang berbasis di AS dengan pembagian hasil tambang mencapai Rio Tinto Group mendapatkan 13%, Pemerintah Indonesiamendapatkan dan PT Indocopper Investama Corporation mendapatkan 9%. Operator tambang ini adalah PT Freeport Indonesia, yaitu anak perusahaan dari Freeport McMoran Copper and Gold. Biaya membangun tambang di atas gunung sebesar 3 milyar dolar AS. Pada 2004, tambang ini diperkirakan memiliki cadangan 46 juta ons emas. Pada 2006 produksinya adalah ton tembaga; gram emas; dan gram perak. Awal dari ditemukan tambang emas ini berawal dari geologisBelandaJean-Jacquez Dozy yang mengunjungi Indonesia pada tahun 1936 untuk menskala glasierPegunungan Jayawijaya di provinsi Irian Jaya di Papua Barat. Dia membuat catatan di atas batu hitam yang aneh dengan warna kehijauan. Pada 1939, dia mengisi catatan tentang Ertsberg bahasa Belanda untuk "gunung ore". Namun, peristiwa Perang Dunia II menyebabkan laporan tersebut tidak diperhatikan. Dua puluh tahun kemudian, geologis Forbes Wilson, bekerja untuk perusahaan pertambangan Freeport, membaca laporan tersebut. Dia dalam tugas mencari cadangan nikel, tetapi kemudian melupakan hal tersebut setelah dia membaca laporan tersebut. Dia memutuskan untuk menyiapkan perjalanan untuk memeriksa Ertsberg. Ekspedisi yang dipimpin oleh Forbes Wilson dan Del Flint, menemukan deposit tembaga yang besar di Ertsberg pada 1960. Penghasilan tembaga Grasberg meningkat dari ton pada 2004 menjadi ton pada 2005. Produksi emas meningkat dari 1,58 juta ons menjadi 3,55 juta ons. Jumlah produksi emas di tambang ini merupakan yang terbesar di dunia. Namun, jika dilihat dari jumlah pembagian hasil tambang emas ini, Pemerintah Indonesia hanya mendapatkan bagian yang sangat kecil. Bagian yang sangat besar diterima oleh operator penambangan yang mendapatkan bagian lebih dari 50%. Ini tentu saja sangat menyedihkan mengingat tambang emas Grasberg berada di wilayah Indonesia dan dimiliki oleh masyarakat Provinsi Papua Barat yang notabene merupakan salah satu provinsi yang terdapat di Indonesia. Indonesia memiliki banyak perusahaan yang bergerak di dalam bidang penambangan emas. Seperti Borneo Gold Corporation, yaitu perusahaan tambang emas yang melakukan kegiatan penambangan emas di Pulau Kalimantan. Perusahaan ini berkantor pusat di Toronto, Kanada. PT Freeport Indonesia yang merupakan perusahaan tambang emas dari Amerika Serikat. Perusahaan ini melakukan kegiatan penambangan di Provinsi Papua. Kalimantan Gold merupakan perusahaan tambang emas dan tembaga. Perusahaan ini berada di Palangkaraya, Kalimantan Selatan. PT Kelian Equatorial Mining adalah perusahaan tambang emas pit terbuka yang melakukan kegiatan penambangan di Kelian, Kutai Barat, Kalimantan Timur. Perusahaan ini berkantor pusat di Balikpapan. Logam Mulia merupakan anak perusahaan dari PT Aneka Tambang Tbk, Unit Pengolahan dan Pemurnian Logam Mulia. Memproduksi emas batangan, koin emas, dan lain-lain. Berkantor pusat di Jakarta. PT Mamberamo Indobara merupakan perusahaan tambang yang bergerak di bidang tambang batubara, emas, dan minyak gas. Lokasi tambang berada di daerah Mamberamo, Papua. Perusahaan ini berkantor pusat di Kota Legenda, Bekasi. PT Nusa Halmahera Minerals merupakan perusahaan yang bergerak di pertambangan emas. Perusahaan ini melakukan kegiatan pertambangan di Pulau Halmahera, Maluku Utara. Perusahaan ini berkantor pusat di Jakarta. PT Southern Arc Minerals Inc Kanada dan PT Selatan Arc Minerals merupakan perusahaan tambang emas dan tembaga. Kantor pusat berada di Graha Krama Yudha, Warung Jati Barat, Jakarta Selatan. Tambang perusahaan ini berada di beberapa lokasi, seperti Wonogiri, Lombok, dan Sumbawa. Pengolahan emas ini selain menguntungkan juga dapat memberikan beberapa efek negatif. Selain melakukan eksplorasi alam secara berlebihan, penambangan emas dan pengolahan emas akan menghasilkan limbah yang dapat mencemari lingkungan. Kasus pencemaran limbah akibat penambangan emas salah satunya terjadi di Perairan Pantai Buyat. Dugaan terjadinya pencemaran logam berat di perairan pantai Buyat karena pembuangan limbah padat tailing seharusnya tidak akan terjadi, seandainya limbah tersebut sebelum dibuang dilakukan pengolahan lebih dulu. Pengolahan limbah bertujuan untuk mengurangi hingga kadarnya seminimal mungkin bahkan jika mungkin menghilangkan sama sekali bahan-bahan beracun yang terdapat dalam limbah sebelum limbah tersebut dibuang. Walaupun peraturan dan tatacara pembuangan limbah beracun telah diatur oleh Pemerintah dalam hal ini Kementrian Lingkungan Hidup, tetapi dalam prakteknya dilapangan, masih banyak ditemukan terjadinya pencemaran akibat limbah industri. Mungkin terbatasnya tenaga pengawas disamping proses pengolahan limbah biasanya memerlukan biaya yang cukup berat adalah logam yang massa atom relatifnya besar, kelompok logam-logam ini mempunyai peranan yang sangat penting dibidang industri misalnya Kadmium Cd digunakan untuk bahan batery yang dapat diisi ulang. Kromium Cr untuk pemberi warna cemerlang atau verkrom pada perkakas dari logam. Kobalt Co untuk bahan magnet yang kuat pada loudspeker atau microphone. Tembaga Cu untuk kawat listrik. Nikel Ni untuk bahan baja tahan karat atau stainless steel. Timbal Pb untuk bahan battery atau Accu pada mobil. Seng Zn untuk pelapis kaleng. Mercury Hg dapat melarutkan emas sehingga banyak digunakan untuk memisahkan emas dari campurannya dengan tanah, bahan pengisi termometer dan dan masih banyak lagi kegunaan logam berat yang tidak mungkin saya sebutkan semuanya disini. Hanya sangat disayangkan disamping begitu banyak kegunaannya, kelompok logam-logam berat ini sangat beracun misalnya Hg, Pb Cd dan Cr dan lain-lain. Ditambah lagi sifatnya yang akumulatif di dalam tubuh manusia, dimana setelah logam berat ini masuk ke dalam tubuh manusia, biasanya melalui makanan yang tercemar logam berat. Logam berat ini tidak dapat dikeluarkan lagi oleh tubuh sehingga makin lama jumlahnya akan semakin meningkat. Jika jumlahnya telah cukup besar baru pengaruh negatifnya terhadap kesehatan mulai terlihat, biasanya logam-logam berat ini menumpuk di otak, syaraf, jantung, hati, ginjal yang dapat menyebabkan kerusakan pada jaringan yang ditempatinya. Tersebarnya logam berat di tanah, peraian ataupun udara dapat melalui berbagai hal misalnya, pembuangan secara langsung limbah industri, baik limbah padat maupun limbah cair, tetapi dapat pula melalui udara karena banyak industri yang membakar begitu saja limbahnya dan membuang hasil pembakaran ke udara tanpa melalui pengolahan lebih dulu. Banyak orang beranggapan bahwa dengan cara membakar maka limbah beracun tersebut akan hilang, padahal sebenarnya kita hanya memindahkan dan menyebarkan limbah beracun tersebut keudara. Pencemaran dengan cara ini lebih berbahaya karena udara lebih dinamis sehingga dampak yang diakibatkannya juga akan lebih luas dan membersihkan udara jauh lebih sulit. Dalam kasus Buyat, logam berat mercury kemungkinan dapat berasal dari limbah proses pemisahan biji emas atau dari tanah bahan tambangnya sendiri memang mengandung mercury. Banyak alternatif yang dapat digunakan untuk mengolah limbah yang mengandung logam berat kususnya mercury diantaranya ialah dengan teknologi Low TemperatureThermal Desorption LTTD atau dengan teknologi Phytoremediation. Pada sistem thermal desorption, material diuraikan pada suhu rendah < 300 oC dengan pemanasan tidak langsung serta kondisi tekanan udara yang rendah vakum. Dengan kondisi tersebut material akan lebih mudah diuapkan dibandingkan dalam tekanan tinggi. Jadi dalam sistem ini yang terjadi adalah proses fisika tidak ada reaksi kimia seperti misalnya reaksi oksidasi. Cara ini sangat efektif untuk memisahkan bahan-bahan organik yang mudah menguap misalnya, volatile organic compounds/VOCs, semi-volatile organic compounds SVOCs, poly aromatic hydrocarbon/PAHs, poly chlorinated biphenyl/PCBs, minyak, pestisida dan beberapa logam Cadmium, Mercury Timbal serta non logam misal Arsen, Sulfur, Chlor dan lain-lain. Material yang telah terpisah dalam bentuk uapnya akan lebih mudah untuk dikumpulkan kembali dengan cara dikondensasikan, diadsorbsi menggunakan filter, larutan atau media lain sehingga tidak tersebar kemana-mana. Dengan sistem thermal desorption material yang berbahaya di pisahkan agar lebih mudah untuk ditangani entah akan dibuang atau dimanfaatkan kembali, sedangkan bahan-bahan organik yang sukar menguap akan terkarbonisasi menjadi arang. Limbah padat yang mengandung polutan mercury dan arsen dimasukkan ke dalam sistem LTTD, limbah akan mengalami pemanasan tidak langsung dengan kondisi tekanan udara lebih kecil dari 1 atmosfer. Polutan mercury dan arsen akan menguap desorpsi, sedangkan limbah padat yang telah bersih dari polutan dapat dibuang ke tempat penampungan. Kemudian uap polutan yang terbentuk dialirkan ke dalam media pengabsorpsi absorber. Untuk menangkap uap logam mercury dapat digunakan butiran logam perak atau tembaga yang kemudian membentuk amalgam. Sedangkan untuk menangkap ion-ion mercury dan arsen dapat digunakan larutan hidroksida OH- -sulfida S2- yang akan mengendapkan ion-ion tersebut. Dalam sistem ini perlu ditambahkan wet scrubber dan filter karbon untuk menangkap partikulat dan gas-gas beracun yang mungkin terbentuk pada proses desorbsi. Keunggulan sistem ini ialah prosesnya cepat dan biaya investasi peralatan dan operasionalnya murah, unitnya dapat dibuat kecil sehingga dapat dibuat sistem yang mobil. Teknologi mengolah limbah dengan sistem Phytoremediasi, menggunakan tanaman sebagai alat pengolah bahan pencemar. Pada limbah padat atau cair yang akan diolah, ditanami dengan tanaman tertentu yang dapat menyerap, mengumpulkan, mendegradasi bahan-bahan pencemar tertentu yang terdapat di dalam limbah tersebut. Banyak istilah yang diberikan pada sistem ini sesuai dengan mekanisme yang terjadi pada prosesnya. Misalnya Phytostabilization, yaitu polutan distabilkan di dalam tanah oleh pengaruh tanaman, Phytostimulation akar tanaman menstimulasi penghancuran polutan dengan bantuan bakteri rhizosphere, Phytodegradation, yaitu tanaman mendegradasi polutan dengan atau tanpa menyimpannya di dalam daun, batang atau akarnya untuk sementara waktu, Phytoextraction, yaitu polutan terakumulasi di jaringan tanaman terutama daun,Phytovolatilization, yaitu polutan oleh tanaman diubah menjadi senyawa yang mudah menguap sehingga dapat dilepaskan ke udara, dan Rhizofiltration, yaitu polutan diambil dari air oleh akar tanaman pada sistem hydroponic. Proses remediasi polutan dari dalam tanah atau air terjadi karena jenis tanaman tertentu dapat melepaskan zat carriers yang biasanya berupa senyawaan kelat, protein, glukosida yang berfungsi mengikat zat polutan tertentu kemudian dikumpulkan dijaringan tanaman misalnya pada daun atau akar. Keunggulan sistem phytoremediasi diantaranya ialah biayanya murah dan dapat dikerjakan insitu, tetapi kekurangannya diantaranya ialah perlu waktu yang lama dan diperlukan pupuk untuk menjaga kesuburan tanaman, akar tanaman biasanya pendek sehingga tidak dapat menjangkau bagian tanah yang dalam. Yang perlu diingat ialah setelah dipanen, tanaman yang kemungkinan masih mengandung polutan beracun ini harus ditangani secara khusus. Lihat Nature Selengkapnya

Еξаφашըճαб етюпυсвጬ ጧбօскΞуприб ኅኂфу ճωв
Непሌβеβ еդеճунዓысиዩθዳиχ ፐբачо ришጺйашը
Хውдружажըм δΕброሔыሺθб лեзα юռюрιруጴо
Хулխφ իжօքитоፋዚኄ էዓараሒοሣврըሷуጩ ецω слևτуճωки
PencemaranTanah akibat pertambangan. BAB I. PENDAHULUAN. A. LATAR BELAKANG. Tanah adalah bagian kerak bumi yang tersusun dari mineral dan bahan organik.Tanah sangat vital peranannya bagi semua kehidupan di bumi karena tanah mendukung kehidupan tumbuhan dengan menyediakan hara dan air sekaligus sebagai penopang
The amalgamation in artisanal gold mining process in order to separate gold from the ore gold-amalgam will produce mercury waste. Poor waste management of mercury can pollute the environment. This research aims to identify a potential distribution pattern of mercury waste or tailing in Cisungsang village, Cibeber sub-district. Methods used are survei and spatial analysis. Samples taken from the research site are the gold miners as subjects of research, sample of mercury waste, environmental samples water, soil, fish, vegetables, and rice. The research results show that the use of mercury 100gr every tromol, every shift has strong correlation r = 0,791 with mercury concentrations in the waste ponds. Mercury concentrations in the liquid of waste ponds are 0,083-0,265 ppm and mercury concentration in the tailing sludge are 0,304-0,407 ppm. Researcher also develop a potential distribution pattern of mercury that consider slopes of 35% in the area, high precipitation, which can reach 4000 mm per year, and the condition of open waste ponds, which can speed up the mercury disposal process in the environment. Mercury concentration in the environment has exceeded the quality standard. Test result on environmental samples show that mercury concentration in fish is 1,66 ppm, in spinach is 4,61 ppm, and soil 0,0127 ppm. Discover the world's research25+ million members160+ million publication billion citationsJoin for free POTENSI SEBARAN LIMBAH MERKURI PERTAMBANGAN EMAS RAKYAT DI DESA CISUNGSANG, KABUPATEN LEBAK, BANTEN POTENTIAL DISTRIBUTION PATTERN OF ARTISANAL GOLD MINING'S MERCURY WASTE IN CISUNGSANG VILLAGE, LEBAK DISTRICT, BANTEN Helmi Setia Ritma Pamungkas', Hasroel Thayib2, dan Inswiasri3 1Peneliti pada Kajian Ilmu Lingkungan, Program Pascasarjana, Universitas Indonesia, Jakarta, Indonesia 2Peneliti pada Pusat Teknologi Intervensi Kesehatan Masyarakat, Badan Litbang Kesehatan Email helmisetiaritma Diterima 23 Desember 2014; Direvisi 23 April 2015; Disetujui 22 Juni 2015 ABSTRACT The amalgamation in artisanal gold mining process in order to separate gold from the ore gold-amalgam will produce mercury waste. Poor waste management of mercury can pollute the environment. This research aims to identib, a potential distribution pattern of mercury waste or tailing in Cisungsang village, Cibeber sub-district. Methods used are survei and spatial analysis. Samples taken from the research site are the gold miners as subjects of research, sample of mercury waste, environmental samples water, soil, fish, vegetables, and rice. The research results show that the use of mercury 100gr every tromol, every shift has strong correlation r = 0,791 with mercury concentrations in the waste ponds. Mercury concentrations in the liquid of waste ponds are 0,083-0,265 ppm and mercury concentration in the tailing sludge are 0,304-0,407 ppm. Researcher also develop a potential distribution pattern of mercury that consider slopes of 35% in the area, high precipitation, which can reach 4000 mm per year, and the condition of open waste ponds, which can speed up the mercury disposal process in the environment. Mercury concentration in the environment has exceeded the quality standard. Test result on environmental samples show that mercury concentration in fish is 1,66 ppm, in spinach is 4,61 ppm, and soil 0,0127 ppm. Keywords Potential distribution, mercury waste, artisanal gold mining ABSTRAK Pengolahan emas dengan cara amalgamasi menghasilkan emas amalgam dan limbah merkuri. Pengelolaan limbah merkuri tidak baik dapat mencemari lingkungan. Penelitian ini bertujuan mengetahui sebaran limbah merkuri/ tailing yang ada di daerah Cisungsang, Kecamatan Cibeber. Metode yang digunakan adalah survei dan spasial. Sampel yang diambil adalah penambang emas rakyat sebagai responden, sampel limbah merkuri, dan sampel lingkungan air, tanah, ikan, sayuran, dan padi. Hasil penelitian menunjukkan bahwa penggunaan merkuri memiliki korelasi yang sangat kuat dengan konsentrasi merkuri pada bak penampung limbah. Penggunaan merkuri dalam gelundung 100 gram per gelundung mempunyai korelasi yang kuat r = dengan konsentrasi merkuri limbah cair pada bak penampung 0,083-0,265 ppm dan konsentrasi merkuri limbah padat 0,304-0,407 ppm. Peneliti juga membuat pola potensi sebaran merkuri, dengan mempertimbangkan kemiringan lereng mencapai 35%, curah hujan yang cukup tinggi yakni hingga 4000 mm/tahun, dan kondisi bak penampung limbah yang terbuka, maka distribusi merkuri relatif cepat ke lingkungan. Konsentrasi merkuri di lingkungan sudah melebihi baku mutu. Hasil uji pada sampel lingkungan menunjukkan konsentrasi merkuri pada ikan sebesar 1,66 ppm, bayam 4,61 ppm, dan tanah 0,0127 ppm. Kata kunci Potensi sebaran, limbah merkuri, tambang emas rakyat PENDAHULUAN Awal adanya pertambangan emas rakyat di Desa Cisungsang, Kecamatan Cibeber, Banten yakni adanya blok Cikidang yang ditutup pada tahun 2007, kemudian disusul blok Pasir Gombong yang ditutup tahun 2008. Kedua blok tersebut dikelola oleh Aneka Tambang. Perusahaan peninggalan zaman Belanda ini dikelola sejak tahun 1936 dan sempat diambil alih Jepang pada tahun 1942. Banyak Masyarakat di daerah Cibeber dan sekitamya menjadi 195 Jumal Ekologi Kesehatan Vol. 14 No 3, September 2015 195 — 205 pekerja di perusahaan ini. Setelah Aneka Tambang Antam tutup tahun 2011, para pekerja menjadi penambang emas rakyat dengan mengolah emas di tempat tinggal masing-masing. Mereka menggunakan merkuri dalam pengolahan emas dalam gelundung untuk memisahkan emas dari bijihnya. Perkembangan pengolahan emas oleh penambang rakyat semakin meluas hingga ke Kecamatan Bayah. Menurut survei yang dilakukan peneliti, desa-desa yang terdapat gelundung untuk pengolahan emas diantaranya di Desa Cisungsang, Desa Situmulya, Desa Lebak Binong, Desa Cihambali, Desa Pasir Gombong, Desa Suakan, Desa Cimancak, Desa Bayah Barat 1, dan Desa Bayah Barat 2. Dari sekian banyak desa di dua kecamatan Cibeber dan Bayah, peneliti memilih Desa Cisungsang dengan alasan pertama, pengelolaan limbah merkuri dekat dengan lahan pertanian sawah, kolam ikan, dan pemukiman. Kedua, Desa Cisungsang masuk dalam wilayah Taman Nasional Gunung Halimun Salak. Ketiga, Desa ini memiliki tradisi Seren Taun perayaan panen padi dan disimpan sebagai ketahanan pangan. Rencana Tata Ruang Wilayah RTRW Kabupaten Lebak tahun 2008-2028, daerah Cibeber dijadikan pusat pendaratan dan pelelangan ikan. Kecamatan Cibeber memiliki Desa atau lebih populer dengan nama Kasepuhan Citorek, Cisungsang dan Cibedug. Desa-desa ini dijadikan Budaya Lebak karena desa khas yang ditata untuk kepentingan pelestarian budaya RPJMD Kabupaten Lebak, 2009-2014. Salah satunya adalah tradisi Seren Taun atau perayaan panen yang dilakukan masyarakat Kasepuhan Cisungsang sebagai perwujudan rasa syukur atas hasil panen padi yang diberikan oleh Sang Khalik. Warga kasepuhan secara harfiah berarti tetua secara turun temurun melakukan tradisi ini untuk ketahanan pangan warga Cisungsang. Namun pada kenyataannya desa ini berkembang pesat akibat adanya aktifitas pertambangan emas yang dikelola oleh perorangan yang menggunakan merkuri dan pengelolaan limbah berada di areal lahan pertanian sawah sebagai lahan tanam padi dan kolam ikan. Berdasarkan basil preliminary research bulan Desembei 2013, peneliti menemukan beberapa penambang emas di daerah Cisungsang, Kecamatan Cibeber menggunakan merkuri untuk proses pemisahan emas dari bijihnya dalam gelundung proses amalgamisasi. Limbah merkuri atau tailing ditampung dalam bak penampung yang ada di lahan pertanian sawah. Kemudian tailing yang mereka anggap masih mengandung emas, diolah kembali dalam tong. Lokasi tong biasanya berada di dekat sungai agar mudah membuang limbah. Limbah ini dibuang ke aliran sungai Cikidang yang mengalir ke DAS Cibareno. Padahal limbah merkuri memiliki daya racun pada manusia. Pertambangan emas yang dilakukan para penambang emas rakyat di Cisungsang, Kecamatan Cibeber, merupakan mata pencaharian tambahan masyarakat sekitar setelah pertanian. Mata pencaharian ini terlihat signifikan dalam meningkatkan taraf hidup masyarakat Cisungsang. Para penambang emas ini menggunakan merkuri dalam pengolahan emas dan membuang limbah ke bak penampung limbah yang berada di lahan pertanian sawah/kolam ikan. Tentu raja aktivitas pengelolaan limbah merkuri atau tailing dapat berpotensi menimbulkan dampak yang merugikan baik pada kelangsungan hidup maupun pada kesehatan manusia. Padahal, masyarakat masih menggunakan area tersebut sebagai lahan untuk menanam padi atau kolam ikan. Tujuan penelitian ini adalah mengetahui sebaran limbah merkuri/ tailing yang ada di daerah Cisungsang, Kecamatan Cibeber. BAHAN DAN CARA Desain Penelitian Penelitian ini dilakukan dengan metode survei dengan mengukur kualitas limbah bak penyimpanan dan mengukur merkuri di air, tanah, sayuran, dan ikan. Kemudian menggali informasi tentang penggunaan merkuri dengan menggunakan kuesioner kepada para penambang dan survei tempat gelundung. Kemudian dilakukan ploting data tempat gelundung 196 Kualitas limbah Pengaruh pada lingkungan Potensi sebaran limbah merkuri...Helmi SRP, Hasroel T, Inswiasri Karakteristik Penambang Emas Rakyat 1 Penggunaan merkuri Gambar 1. Langkah-langkah analisis potensi sebaran merkuri pertambangan emas rakyat dalam peta, dianalisis dengan menggunakan spasial analisis. Untuk menyelesaikan masalah, peneliti berpendapat bahwa ada beberapa langkah yang hams dilalui yaitu a Identifikasi para penambang emas rakyat di Cisungsang b Identifikasi lokasi pengolahan emas gelundung dan tong c Pengambilan sampel di bak pengendap dan lahan pertanian sawah air, tanah, ikan, padi d Analisa sampel ke laboratorium dan ploting data merkuri dipeta e Analisis potensi sebaran merkuri yang dilakukan para penambang emas rakyat di Cisungsang, Kecamatan Cibeber, Kabupaten Lebak, Banten Populasi dan sampel Sampel terdiri atas penambang emas rakyat, limbah merkuri cair dan padat, dan lingkungan air, ikan, tanaman, padi dari lahan pertanian sawah. Penambang emas rakyat adalah penambang emas rakyat yang berada di kawasan Cisungsang dan sekitarnya, Kecamatan Cibeber, Kabupaten Lebak — Banten. Limbah merkuri adalah limbah padat dan limbah cair yang mengandung merkuri pada bak penampung yang berada di kawasan Cisungsang dan sekitarnya, Kecamatan Cibeber, Kabupaten Lebak — Banten. Lahan pertanian sawah adalah lahan pertanian sawah yang berada di kawasan Cisungsang dan sekitarnya, Kecamatan Cibeber, Kabupaten Lebak —Banten. Sampel-sampel lingkungan maupun sampel limbah yang diambil termasuk jenis sampel sesaat/grab sample Effendi, 2003. Jumlah sampel tanah yang diperlukan menurut standar pengambilan sampel lingkungan adalah 1-2 kg Suganda et al., 2006. Menurut Hadi 2005 bahwa pengambilan sampel tanah dengan cara acak sederhana cocok untuk lahan perkebunan, persawahan, dan lain-lain dengan asumsi cenderung homogen dan variabilitas komposisi kimiawi tanahnya rendah. Analisis Data Analisa data yang dilakukan adalah analisis spasial dan analisis kuantitatif. Analisis spasial dengan ploting data kandungan merkuri di peta Bakosurtanal overlay dengan peta tata guna lahan dengan menggunakan perangkat lunak Arc GIS 10. Analisis kuantitatif dilakukan terhadap data primer yang diperoleh dari wawancara dengan menggunakan kuesioner, observasi, dan pengukuran. Peneliti mengolah dan menyajikan dalam bentuk deskriptif, menggunakan analisis univariat, dan bivariat untuk membuat korelasi penambang emas rakyat dengan kadar Hg di lahan pertanian sawah yang digunakan sebagai kolam penampung limbah merkuri/tailing oleh penambang. Penelitian dilakukan pada Bulan Januari hingga April 2015. HASIL Karakteristik penambang Berdasarkan data yang tercatat di Kantor Desa, ada 105 jiwa yang berwiraswasta, 3 diantaranya penambang sekaligus pemilik gelundung. Peneliti hanya berhasil menemui 61 responden pemilik gelundung dan 2 orang pemilik tong. Sebagian besar responden 85,71 % adalah 197 Jurnal Ekologi Kesehatan Vol. 14 No 3, September 2015 195 — 205 laki-laki dan 14,29% adalah perempuan Tabel 1. Tabel 1. Karakteristik Responden Karakteristik Kategori Persen Jumlah % Jumlah orang - . - Jenis Kelamin Laki-laki 63 54 85,71 Perempuan 9 14,29 Umur 16-54 tahun 59 93,65 >55 tahun 4 6,35 Pendidikan Tidak sekolah 4 6,35 SD 39 61,90 SMP 11 17,46 SMA 8 12,70 Sarjana 2 3,17 Penggunaan merkuri Secara umum penggunaan merkuri di Desa Cisungsang termasuk besar hingga mencapai 73 kg dalam satu kali pengolahan. Merkuri minimum yang digunakan per gelundung adalah 100 gram Tabel 2. Penggunaan merkuri biasanya disesuaikan dengan potensi emas yang berada dalam batuan yang mereka dapatkan. Jika potensinya cukup bagus, maka merkuri yang digunakan dapat melebihi 200 gram/gelundung. Penggunaan merkuri paling tinggi terjadi di Poboya yakni 500 cc per tromol/gelundung Zulfikah et al., 2014. Tabel 2. Tabel penggunaan merkuri Jumlah Banyak Total Penggunaan Gelundun Merkuri/ merkuri Jumlah g gelundung Gelundung x Banyak merkuril 730 100 gram 73000 gram Penambang di Cisungsang memiliki gelundung antara 5-40 buah dan total gelundung yang berada di Cisungsang adalah 730 gelundung. Jika penggunaan merkuri pergelundung minimal 100 gram, maka untuk sekali pengolahan, para penambang membutuhkan 73 kg merkuri. Biasanya penggunaan merkuri juga berdasarkan asal batuan. Batuan penghasil 198 emas dipasok dari daerah Pasir Gombong, Cikidang, dan Ciomas. Battan yang paling bagus untuk kadar emasnya berasal dari Pasir Gombong. Semakin bagus kadar emasnya, pemakaian merkuri semakin tinggi. Kualitas limbah Kualitas limbah cair Tabel 3 pada bak penampung memiliki konsentrasi merkuri terendah 0,083 ppm dan konsentrasi tertinggi 0,265 ppm. Hal ini berarti, limbah cair yang terdapat dalam bak penampung memiliki konsentrasi jauh lebih tinggi dari yang diperbolehkan oleh Menteri Lingkungan Hidup. Sedangkan limbah cair pada inlet tong memiliki konsentrasi merkuri 0,0019 yang masih berada dibawah ambang batas baku mutu limbah yakni 0,005 ppm. Tabel 3. Kualitas limbah cair Keterangan Konsentrasi Merkuri pada Limbah Cair Minimum 0,00190 Maksimum 0,26500 Rata-Rata 0,15219 Median 0,17100 Jumlah 15 Limbah merkuri yang diambil berupa sedimen. Limbah ini diambil dari 2 jenis pengolahan emas, yakni gelundung dan tong. Jumlah bak penampung yang sudah disurvei sebanyak 70 lokasi, sedangkan pengolahan emas dengan menggunakan tong tidak memiliki bak penampung. Lokasi pengambilaan sampel limbah padat dari bak penampung diambil dari 7 lokasi dan 1 sampel limbah padat dari lokasi tong. Total sampel limbah padat berjumlah 13 sampel. Limbah padat atau tailing Tabel 4 pada penampung memiliki konsentrasi merkuri 0,304-0,407 ppm. Limbah padat pada bak penampung sudah melebihi baku mutu yang ditetapkan oleh Peraturan Pemerintah No. 18 tahun 1999 mengenai Baku Mutu TCLP Zat Pencemar dalam Limbah untuk Penentuan Karakteristik Sifat Racun sebesar 0,01 ppm. Potensi sebaran limbah merkuri...Helmi SRP, Hasroel T, Inswiasri Tabel 4. Kualitas limbah padat Keterangan Konsentrasi Merkuri pada Limbah Padat Minimum 0,30400 Maksimum 0,40700 Rata-Rata 0,36285 Median 0,37700 Jumlah Sampel 13 Besar konsentrasi merkuri pada bak penampung memiliki hubungan yang kuat dengan penggunaan merkuri. Uji hipotesis dengan statistik menunjukan bahwa nilai r = 0,791 berarti memiliki korelasi sangat kuat. Semakin banyak merkuri yang digunakan dalam pengolahan emas pada gelundung, maka semakin tinggi konsentrasi limbah merkuri pada bak penampung. Hal ini juga terjadi pada penelitian sebelumnya yang dilakukan oleh Setiabudi 2006 bahwa kenaikan konsentrasi merkuri yang sangat tinggi berhubungan erat dengan pemakaian merkuri dalam proses penggilingan bijih dengan menggunakan alat gelundung. Gambar 2. Lokasi pengambilan sampel ikan koordinat 657567, 9248255, elv 715 Kolam ikan hanya disekat oleh tumpukan tailing yang dibungkus oleh karung-karung beras. Jarak antara bak penampung limbah dengan lahan pertanian sawah atau kolam ikan antara 0,30-2,00 m Gambar 2 Tumbuhan atau sayuran juga banyak yang tumbuh dekat dengan bak penampung. Padahal tumbuhan atau sayuran tersebut dikonsumsi oleh masyarakat Cisungsang. Konsentrasi merkuri di lingkungan Konsentrasi merkuri di lingkungan termasuk tinggi. Konsentrasi tertinggi terdapat dalam tanaman yakni bayam sebesar 4,61 ppm, ikan 1,66 ppm dan tanah 0,0127 ppm. Konsentrasi merkuri pada ikan dan sayuran sudah melebihi baku mutu, sedangkan pada air sebesar 0,0008 dan masih di bawah baku mutu Tabel 5. 199 Jurnal Ekologi Kesehatan Vol. 14 No 3, September 2015 195 — 205 Tabel 5. Konsentrasi merkuri di lingkungan Media Konsentrasi merkuri tertinggi ppm Nilai Baku mutu Regulasi Sayuran 4,61 0,03 ppm BPOM Ikan segar 1,66 0,5 ppm BPOM Tanah 0,0127 0,02-0,625 ppb WHO, 1989 Air 0,0008 0,005 ppm PP No. 20 Tahun 1990 Biji-bijian 0,002 0,05 ppm BPOM Hasil uji laboratorium Tabel 5 pada sampel air menunjukkan konsentrasi tertinggi sebesar 0,0008 ppm. Angka tersebut masih berada di bawah nilai yang ditetapkan oleh Peraturan Pemerintah No. 20 Tahun 1990, yakni 0,005 ppm kandungan merkuri yang diperbolehkan dalam air. Hal ini berarti kandungan merkuri pada air masih aman dan masih bisa dipakai masyarakat untuk mengairi sawahnya. Pada penelitian sebelumnya yang dilakukan di daerah Pongkor oleh beberapa peneliti Tabel 6 dapat dilihat perbandingan keberadaan merkuri di lingkungan Peneliti membandingkan dengan wilayah pertambangan emas rakyat yang menggunakan merkuri dalam pengolahan emas. Tabel 6. Kadar merkuri pada berbagai jenis contoh di lokasi penelitian, Pongkor, Kabupaten Bogor, Jawa Barat tahun 2001-2012 Jenis Contoh Kisaran ppm standar Lokasi Air sungai 6-220 0,001 ppm Pongkor Juliawan, 2012 Sedimen areal persawahan 7,73-22,68 0,02-0,625 ppb Pongkor Rahmansyah et a/.,2009 Ikan 0,16-0,24 0,5 ppm Pongkor Halimah et al, 2001 Sayuran 0,04 0,03 ppm Pongkor Widowati, 2008 Beras 0,25-0,45 0,05 ppm Pongkor Widowati, 2008 Hasil penelitian Potensi sebaran merkuri Dalam penelitian ini, pola sebaran merkuri dengan metode spasial dilakukan dengan mempertimbangkan aspek topografi dan curah hujan. Topografi di daerah ini memiliki kemiringan hingga 35% dan data curah hujan yang cukup tinggi yakni hingga 4000 mm/tahun Sawitri et al., 2010 , maka merkuri relatif cepat terbawa arus hujan ditambah kondisi bak penampung yang terbuka. Potensi sebaran merkuri dapat dilihat pada Gambar 3 dan Gambar 4. 200 PETAI POTEMSISFHARI. MERMAN MAMAS PENCOUNAN OMB. TWA PAINA, WET WON PkilIMAN PHAN KC...00M CIIIESE11,1411UKIEN TES. astPeTt3. mpdvid Lnr41040 PerenPai.. ryelhel WIDE% MAP Potensi sebaran limbah merkuri...Helmi SRP, Hasroel T, Inswiasri Gambar 3. Peta potensi sebaran merkuri pada Lingkungan di Desa Cisungsang sumber BIG, 2015, modified soot HAIN mt.x..454146 ;Ion r51119- lrmMtmrn rvOn0,,•lhouir Gambar 4. Penampang potensi sebaran merkuri di Daerah Cisungsang, Kecamatan Cibeber, Kabupaten Lebak Potensi penyebaran limbah merkuri di Desa Cisungsang akan makin meluas mengikuti pola penyebaran pemukiman, karena penambang mengolah emas di rumah masing- masing. Limbah hanya ditampung pada bak penampung tanpa atap, maka sebaran merkuri di lingkungan makin menyebar ke areal persawahan, dan konsentrasi merkuri semakin tinggi. PEMBAHASAN Sebagian besar penambang adalah mereka dengan mata pencaharian sebagai petani. Umumnya pengolahan emas di Desa Cisungsang berada disamping rumah para penambang, yakni di lahan pertanian sawah atau kolam ikan. Lahan pertanian sawah atau kolam ikan di daerah ini tidak terpisah dengan pemukiman. Keberadaan bak penampung dan lahan pertanian sawah atau kolam ikan sangat dekat Gambar 1, sehingga sangat berisiko terjadi pencemaran 201 Jurnal Ekologi Kesehatan Vol. 14 No 3, September 2015 195 — 205 pada air, sedimen, tanaman dan ikan yang berada dalam lahan tersebut. Jika dilihat sebagian besar tingkat pendidikan adalah SD 61,90%, maka diasumsikan pengetahuan mengenai bahaya merkuri masih rendah. Dikhawatirkan para penambang masih belum faham mengenai penggunaan merkuri untuk pengolahan emas dalam gelundung. Hal ini dibuktikan dengan konsentrasi limbah yang cukup besar di bak penampungan. Menurut Zulkifli 2013, penambangan emas telah menyebabkan peralihan pekerjaan masyarakat menjadi penambang, peningkatan pendapatan, dan efek pengganda ekonomi terhadap kegiatan lainnya. Hal ini terjadi juga pada masyarakat di Kecamatan Cibeber yang berpindah profesi seperti dari petani menjadi penambang emas di Kawasan Taman Nasional Gunung Halimun Salak. Para penambang menggunakan bak penampungan limbah merkuri dekat dengan pemukiman dan lahan pertanian sawah. Lahan pertanian yang dijadikan bak penampung dapat mengalami pencemaran. Menurut Hidayati et al. 2006, tumbuhan yang tumbuh pada bak penampung cenderung tinggi terhadap akumulasi merkuri pada akar. Bayam berdaun dun adalah termasuk tumbuhan hiperakumulator terhadap merkuri Irsyad et al., 2014. Tidak hanya bayam, talas juga memiliki daya akumulasi yang tinggi terhadap merkuri Rahmansyah et a/.,2009. Menurut Subowo et al. 1999, adanya limbah B3 dalam lahan pertanian dapat menurunkan produktivitas dan kualitas hasil pertanian. Pencemaran merkuri ke lingkungan pada saat amalgamisasi dan pemijaran emas amalgam dalam proses penambangan emas, akan mengkontaminasi cumber air minum dan ikan yang sangat diperlukan oleh masyarakat sekitar tambang Inswiasri dan Martono, 2007. Pembuangan tailing yang berasal dari proses amalgamasi bijih emas, memungkinkan limbah merkuri tersebar di sekitar wilayah penambangan dan dapat menyebabkan terjadinya pencemaran lingkungan oleh merkuri organik atau anorganik. Hal ini terjadi terutama di wilayah-wilayah tropis, karena tingginya tingkat pelapukan kimiawi dan aktivitas biokimia yang akan menunjang percepatan 202 mobilisasi unsur-unsur berpotensi racun Herman, 2006. Hasil penelitian uji petik geologi medic mengindikasikan bahwa paparan merkuri tidak hanya pada media air dan tanah, tetapi juga pada biomarker seperti tanaman pangan, sayuran dan rambut, rata-rata masih di bawah baku mutu, namun demikian pada ikan dan urin sudah ada yang melebihi nilai baku mutu Agung dan Hutamadi,2012. Tahun 1995 terdeteksi kandungan merkuri di atas ambang batas pada hati ikan kerong-kerong teraponjarbua yaitu 9,1 mg/g Wurdiyanto, 2007 atau senilai 18 kali lebih tinggi dari panduan Organisasi Kesehatan Dunia WHO, 1990. Hal serupa juga dialami penambang emas di Kecamatan Kurun Kabupaten Gunung Mas, dengan rata-rata kadar merkuri di rambut µ g/g Lestarisa, 2010, nilai tersebut telah melebihi kadar merkuri normal dalam rambut yaitu 1-2 mg/kg menurut WHO 1990. Menurut Kitong et al. 2013, semakin dekat jarak dari lokasi penambangan maka semakin tinggi pula konsentrasi merkuri dibandingkan dengan lokasi yang berada jauh dari lokasi pertambangan. Merkuri dan turunannya sangat beracun. Jika merkuri masuk dalam lingkungan perairan akan merugikan manusia, karena sifatnya yang mudah larut dan terikat dalam jaringan tubuh organisme air. Pencemaran perairan oleh merkuri sangat mempengaruhi ekosistem setempat, karena sifatnya yang stabil dalam sedimen, kelarutannya yang rendah dalam air dan kemudahannya diserap dan terakumulasi dalam tubuh organisme yaitu melalui rantai makanan. Menurut WHO 1989, merkuri di alam umumnya berbentuk metil merkuri yaitu bentuk senyawa organik dengan daya racun tinggi dan sukar terurai dibandingkan zat asalnya. Merkuri yang dapat diakumulasi adalah metil merkuri, yang mana dapat diakumulasi oleh ikan dan dapat betacun bagi manusia. Phytoplankton dan bakteri dapat melakukan transfer dan transformasi merkuri, karena kedua organisme tersebut relatif mendominasi perairan dan sea grass. Bakteri dapat merubah merkuri menjadi metil merkuri, dan membebaskan merkuri dari sedimen. Potensi sebaran limbah merkuri...Helmi SRP, Hasroel T, Inswiasri Kegiatan pengolahan limbah merkuri di Daerah Cisungsang memiliki kesamaan dengan tempat-tempat lain di Indonesia, seperti di Kecamatan Sumulata dan Anggrek, Kabupaten Gorontalo Utara. Konsentrasi merkuri dalam tailing Desa Sumulata 4,35-23,85 ppm dan di Desa Ilangata 27,33-35,25 ppm Mahmud et al., 2014. Melihat dari pola persebaran tempat gelundung di daerah penelitian, maka peneliti perlu mengetahui konsentrasi merkuri dalam limbah cair dan padat dalam bak penampung dan mengetahui merkuri yang digunakan dalam gelundung. Kadar emas yang didapat oleh para penambang emas rakyat antara 0,2-3 gram dalam sekali pengolahan. Kadar tersebut belum murni emas, masih terdapat campuran perak. Menurut para penambang, kadar emas yang paling bagus terdapat pada batuan yang berasal dari Pasir Gombong dan Cikidang. Ketika PT Antam masih beroperasi, blok ini sudah menghasilkan ton emas Badan Geologi, 2013. Jika ingin mendapatkan emas murni, maka para penambang hams menggunakan pembakaran. Proses pembakaran ini juga menimbulkan uap merkuri ke udara, proses pembakaran umumnya di tempat terbuka. Peneliti berpendapat bahwa uap merkuri yang ditimbulkan pada saat pembakaran berisiko mencemari lingkungan. Satu kali pengolahan memakan waktu 7-8 jam dengan rata-rata jumlah gelundung 10 buah. Merkuri yang ditambahkan dalam satu gelundung adalah 100 gram, jadi sekali pengolahan membutuhkan 1 kg merkuri. Harga merkuri diasumsikan 150 ribu/kilo, maka biaya yang dikeluarkan untuk pengolahan adalah 150 ribu belum ditambah biaya listrik dan biaya bahan bakar minyak ke tempat tambang. Emas yang dijual ke pengepul berkisar 200-300 ribu/gram emas tidak murni. Emas yang didapat dengan harga pengolahan tidak terlalu menguntungkan. Peneliti melihat, kegiatan pengolahan ini juga sebagai kegiatan sampingan oleh para penambang disela menunggu musim panen tiba. Para penambang juga mengkonsumsi ikan jenis mujair, emas, nila dan lele dari kolam ikan yang dekat dengan bak penampung limbah. Ikan ini juga mereka jual ke masyarakat Cisungsang sendiri. Namun untuk air minum, para penambang mengkonsumsi air dari mata air yang tidak tercemar merkuri. Sampel ikan diambil dari kolam ikan yang hanya disekat oleh sak tailing. Konsentrasi merkuri yang ada pada ikan, nilai tertinggi sebesar 1,66 ppm Purnama et al., 2015. Dengan mengacu pada Keputusan Direktur Jenderal Pengawasan Obat dan Makanan POM No .3725/B/SK/VII/89 tentang batas maksimum cemaran logam berat dalam makanan yang diperbolehkan pada ikan adalah sebesar 0,5 ppm. Hal ini berarti rata-rata konsentrasi merkuri pada ikan telah melebihi kadar yang diperbolehkan. Peneliti berpendapat bahwa ikan tidak aman untuk dikonsumsi masyarakat. Selain ikan yang dijadikan bahan konsumsi, masyarakat Cisungsang juga mengkonsumsi sayuran misalnya bayam dan talas. Bayam dan talas ini diambil dekat dengan bak penampung, sehingga kemungkinan besar bisa tercemar merkuri. Batas maksimum merkuri yang diperbolehkan untuk sayuran oleh Badan Pengawas Obat dan Makanan RI, No sebesar 0,03 ppm. Hasil uji laboratorium pada sayuran menunjukkan konsentrasi merkuri terbesar ada pada bayam dengan nilai 4,61 ppm. Hal ini berarti konsentrasi merkuri yang terdapat pada bayam 154 kali lipat lebih tinggi yang ditetapkan oleh BPOM. Peneliti beranggapan bahwa sayur bayam memiliki daya akumulator yang paling tinggi pada merkuri. Pada penelitian sebelumnya yang dilakukan oleh Irsyad et al., 2014 juga dikatakan bahwa bayam merupakan tumbuhan hiperakumulator terhadap merkuri. Padi yang ditanam di areal pesawahan memiliki risiko tercemar. Hasil uji laboratorium pada padi menunjukkan konsentrasi merkuri sebesar 0,002 ppm. Angka tersebut masih dibawah ambang batas yang ditetapkan oleh Kepala Badan Pengawas Obat dan Makanan RI, No. sebesar 0,05 ppm. Peneliti berpendapat bahwa beras daerah Cisungsang juga masih aman untuk dikonsumsi masyarakat. 203 Jurnal Ekologi Kesehatan Vol. 14 No 3, September 2015 195 — 205 Peneliti menyadari juga bahwa Sungai Cikidang juga berpotensi tercemar oleh merkuri, tetapi peneliti tidak meneliti sampai sejauh itu, maka perlu penelitian lanjutan mengenai konsentrasi merkuri pada Sungai Cikidang sebagai anak sungai DAS Cibareno. Daerah ini dikenal dengan lumbung padi, artinya pangan utama mereka hams terhindar dari berbagai hal yang bisa merusak basil panen. Hasil panen yang didapat mencapai 3,5 ton/ha. Beras dan hasil panen ini, umumnya mereka konsumsi sendiri yang disimpan dalam lumbung hingga panen berikutnya Menurut Edi 2015, irigasi ini mengairi 475 ha sawah dan total 530 ha sawah, sisanya dialiri oleh mata air. KESIMPULAN DAN SARAN Kesimpulan Konsentrasi merkuri rata-rata pada limbah cair 0,152 ppm dan limbah padat 0,363 ppm, nilai ini sudah melebihi baku mutu limbah. Pengelolaan limbah merkuri yang buruk di Desa Cisungsang mempengaruhi kualitas limbah di bak penampungan limbah dan mencemari lingkungan. Hasil pemeriksaan sampel lingkungan menunjukkan konsentrasi merkuri pada sampel bayam sebesar 4,61 ppm, ikan 1,66 ppm, dan tanah 0,0127 ppm. Potensi sebaran merkuri dilingkungan dipengaruhi oleh curah hujan tinggi 4000 mm/tahun, kemiringan topografi 35%, dan kondisi bak penampungan tidak tertutup. Pola sebaran mengikuti lokasi pemukiman sehingga aliran limbah merkuri yang terbuang akan mencemari persawahan yang letaknya lebih rendah dari tempat proses tambang emas rakyat tersebut. Saran Melihat pola sebaran limbah merkuril tailing pertambangan emas rakyat tidak sepenuhnya aman buat lingkungan, maka peneliti menyarankan beberapa alternatif untuk pengelolaan limbah ini. Badan Lingkungan Hidup Daerah Kabupaten Lebak perlu mengawasi dengan serius dalam pengelolaan limbah merkuri. Pengolahan emas sebaiknya terintegrasi, mengingat 204 sebaran tempat gelundung yang sudah luas. Disarankan pula agar tidak ada sebaran di tempat yang lebih tinggi. Seharusnya para penambang dapat mengurangi penggunaan merkuri dalam pengolahan emas, agar merkuri di lingkungan tidak tinggi. Pembuatan bak penampung tidak hanya 2, tetapi 4 bak pengendap dan dibuat tempat penimbunan seperti yang sudah diatur dalam Keputusan Menteri Lingkungan Hidup No. 23 tahun 2008. Pada saat melakukan pengolahan emas, sebaiknya para penambang menggunakan alat pelindung diri bempa masker, sarong tangan latex, dan lain-lain, agar tidak terpapar merkuri. Masyarakat sebaiknya mencuci ikan dan sayur yang akan dikonsumsi dicuci dengan asam cuka. Kemudian tidak mengizinkan tanah atau sawahnya dijadikan tempat pengolahan emas maupun tempat pembuangan tailing. Perlu ada penelitian lanjutan untuk mengetahui distribusi pencemaran merkuri di DAS Cibareno, mengingat sepanjang sungai tersebut ditempati oleh masyarakat yang menggunakan air sungai untuk keperluan sehari-hari. Perlu dilakukan kajian ekonomi lingkungan, mengingat cemaran merkuri yang ditimbulkan pada lingkungan cukup besar, dibandingkan dengan hasil yang didapatkan oleh para penambang, guna menuju pertambangan emas rakyat yang mampan. UCAPAN TERIMAKASIH Penulis ucapkan terima kasih kepada Ibu Dr. Haruki Agustina yang telah menyediakan waktu untuk menyempurnakan basil penelitian ini dan teman seperjuangan Mutiara Soprima, yang selalu memberikan dorongan dalam mengerjakan penelitian. Tidak lupa juga kepada Bapak Tri Edhi Budhi Soesilo, yang selalu memberikan semangat dalam menyelesaikan penelitian dan penulisan tesis. DAFTAR PUSTAKA Agung, L. Novalia. dan Hutamadi, R. 2012. Paparan Pertambangan Emas Rakyat Cisoka, Kabupaten Lebak, Provinsi Banten Potensi sebaran limbah merkuri...Helmi SRP, Hasroel T, Inswiasri Suatu Tinjauan Geologi Medis. Buletin Sumber Daya Geologi Volume 7 Nomor 3-2012. Badan Geologi. 2013. Mineral Strategis di Kabupaten/Kota. eraca-mineral mode = administrasi, diakses tanggal 14 Juni 2015. Edi, M. 2015, April 9. Personal Inteview Effendi, H. 2003. Telaah Kualitas Air Bagi Pengelolaan Sumber Daya dan Lingkungan Periran. Yogyakarta Kanisius. Hadi, A. 2005. Prinsip Pengelolaan Pengambilan Sampel Lingkungan. Jakarta. PT Gramedia Pustaka Utama. Halimah, S., Darmaerius, Nety, Asrul. 2001. Pencemaran Merkuri di Sungai Cikaniki Akibat Penambangan Emas Tradisional Di Kawasan Gunung Pongkor Jawa Barat. Prosiding Seminar Nasional Keselamatan, Kesehatan dan Lingkungan, Oktober 2001. Herman, 2006. Tinjauan terhadap Tailing Mengandung Unsur Pencemar Arsen As, Merkuri Merkuri, Timbal Pb, dan Kadmium Cd dari Sisa Pengolahan Bijih Logam. Jumal Geologi Indonesia Maret 2006;31-36. Hidayati, N., Syarif, F., dan Juhaeti,T. 2006. Potensi Centrocemapubescence, Calopogonium mucunoides, dan Micania cordata dalam Membersihkan Logam Kontaminan pada Limbah Penambangan Emas. Bogor Lembaga Ilmu Pengetahuan Indonesia UPI. Inswiasri, Martono, H. 2007. Kajian Pencemaran Di Wilayah Tambang Emas Rakyat. Media Litbang Kesehatan Volume XVII Nomor 3 Tahun 2007. Irsyad, M., Sikanna, R., Musafira. 2014. Translokasi merkuri pada daun tanaman bayam Duni Amaranthus Spinosus Dari Tanah Tercemar. Online Jurnal of Natural Science, 17. Juliawan, N. 2012. Pendataan Penyebaran Merkuri pada Wilayah Pertambangan di Daerah Pongkor, Kabupaten Bogor, Provinsi Jawa Barat. Badan Geologi. com_content&view=article&id=453 pendataa n-penyebaran-merkuri-pada-wilayahpertam bangan-di-daerah pongkor&catid=52content-menu-utama&Itemid=458, diakses tanggal 14 Juni 2015. Kitong, Abidjulu, J. Koleangan, H. 2013. Analisis Merkuri Hg dan Arsen As di Sedimen Sungai Ranoyapo Kecamatan Amurang Sulawesi Utara. Jumal Mipa Unsrat Online 11,16-19. Lestarisa, T. 2010. Faktor-faktor yang Berhubungan dengan Keracunan Merkuri Merkuri Pada Penambang Emas Tanpa Izin PETI Di Kecamatan Kurun, Gunung Mas, Kalimantan Tengah. Semarang Magister Kesehatan Lingkungan, Pasca Sarjana Universitas Diponegoro. Mahmud, M., Lihawa, F., Iyabu, H., dan Sakakibara, M. 2014. Kajian Pencemaran Merkuri Terahadap Lingkungan Dikabupaten Gorontalo Utara. Gorontalo Universitas Negeri Gorontalo. - Purnama, D., Yulianto, K., Ibrahim, Parwoto, Hutabarat, A. Dopri. 2015.Laporan Basil Investigasi Dugaan Intoksikasi Merkuri Di Wilayah Kasepuhan Cisitu, Kecamatan Cibeber, Kabupaten Labak, Provinsi Banten. Jakarta BBTKLPP. Rahmansyah, M., Hidayati, N., Juhaeti, T. 2009. Tumbuhan Akumulator Untuk Fitoremediasi Lingkungan Tercemar Merkuri dan Sianida Penambangan Emas. Cibinong Sawitri, R., Subiandono, E. 2010. Karakteristik dan Persepsi Masyarakat Daerah Penyangga Taman Nasional Gunung Halimun Salak. Jurnal penelitian Hutan dan Konservasi Alam, Subowo, Mulyadi, S. Widodo, dan Nugraha, A. 1999. Status dan penyebaran Pb, Cd, dan Pestisida Pada Lahan Sawah Intensifikasi di Pinggir Jalan Raya. Prosiding Bidang Kimia dan dan Bioteknologi Tanah, Puslittanak, Bogor. Suganda, H., Rachman, A., Sutono. 2006. Petunjuk Pengambilan Contoh Tanah. Bogor Badan Penelitian dan Pengembangan Pertanian Widowati. 2008. Efek Toksik Logam. Yogyakarta CV. Andi. Wurdiyanto, G. 2007. Merkuri, Bahayanya dan Pengukurannya. Buletin Alara, Volume 9, Nomor 1 dan 2. World Commission on Evironment dan Development 1987. Our Common Future.WCED. World Health Organization, 1990. Environmental Health Criteria 101; Methyl- Mercury, IPCS, Geneva. Zulfikah, Basir, M., Isrun. 2014 Konsentrasi Merkuri Hg dalam Tanah dan Jaringan Tanaman Kangkung ipomea reptans yang diberi Bokashi Kirinyu Chromolaena ordota L. pada Limbah Tailing Penambangan Emas Poboya Kota Palu. 2 6 587-595, Desember 2014. Zulkifli. 2013. Analisis Dampak Ekonomi, Sosia Budaya dan Kesehatan Masyarakat Akibat Penambangan Emas Di Kecamatan Sawang Aceh Selatan. Jumal Ekonomika Universitas Almuslim Bireun-Aceh, Vol. 1No. 7 Maret 2013. 205 ... Dugaan ini didasarkan pada tingkat pendidikan, sebagian besar para penambang memiliki pendidikan yang relative tinggi dibandingkan masyarakat Lombok Barat pada umumnya, yaitu sebagian SMP-SMA sederajat. Pernyataan ini diperkuat oleh Pamungkas et al., 2015, bahwa rendahnya pemahaman masyarakat penambang di Desa Cisungsang, Lebak, Banten tentang dampak negatif dari tambang lebih disebabkan karena pendidikann, dimana sebagian besar adalah SD 61,90%. ...The high value and economic prospects of precious metals, have not been able to cover the environmental, health and social and economic impacts. The conversion of land functions and open pit mining activities as well as the amount of sediment waste causes very significant landscape and environmental changes. This study aims to evaluate the impact of using mercury and cyanide based on the knowledge and experience of actors miners and gold processors and the surrounding community on the island of Lombok. Field data collection was carried out by triangulation, namely in-depth interviews with actors and the community, and secondary/reference data from related agencies, especially the health center and several related research results. Gold extraction on the island of Lombok uses two methods which are carried out in stages, namely Amalgamation with mercury in the shelling process and Cyanidation with Potassium Cyanide in the bagging process. The results of the study show that the negative impacts of the mining process are more due to land clearing and miner safety. The impact of gold extraction using mercury is long-term, so it is difficult to identify the impact. Meanwhile, the impact of the use of cyanide is directly felt and seen by the public, especially in terms of decreasing the presence and yield of fish caught in rivers and T KitongJemmy Abidjulu Harry S. J. KoleanganA K Merkuri ArsenPenelitian ini bertujuan untuk mengukur konsentrasi merkuri dan arsen di sedimen Sungai Ranoyapo. Pengukuran konsentrasi total merkuri menggunakan Cold Vapor-Atomic Absorption Spectrometry CV-AAS sedangkan pengukuran konsentrasi total arsen menggunakan Atomic Absorption Spectrometry AAS. Hasil yang diperoleh menunjukkan konsentrasi total merkuri di sedimen sungai yang diambil dari Desa Lompad, Desa Picuan, Desa karimbow I, Desa Karimbow II dan muara Sungai Ranoyapo berturut-turut yaitu 0,05 ppm, 0,05 ppm, 1,3 ppm, 0,18 ppm dan 0,05 ppm. Konsentrasi total arsen di sedimen sungai yang diambil dari Desa Lompad, Desa Picuan, Desa Karimbow I, Desa Karimbow II dan muara Sungai Ranoyapo berturut-turut yaitu 3 ppm, 2 ppm, 100 ppm, 2 ppm dan 1 ppm. Konsentrasi total merkuri dan arsen tertinggi adalah di Desa Karimbow I yang merupakan daerah pertambangan emas Z ULKIFLI HERMANSARI Ketika tailing dari suatu kegiatan pertambangan dibuang di dataran atau badan air, limbah unsur pencemar kemungkinan tersebar di sekitar wilayah tersebut dan dapat menyebabkan pencemaran lingkungan. Bahaya pencemaran lingkungan oleh arsen As, merkuri Hg, timbal Pb, dan kadmium Cd mungkin terbentuk jika tailing mengandung unsur-unsur tersebut tidak ditangani secara tepat. Terutama di wilayah- wilayah tropis, tingginya tingkat pelapukan kimiawi dan aktivitas biokimia akan menunjang percepatan mobilisasi unsur-unsur berpotensi racun. Salah satu akibat yang merugikan dari arsen bagi kehidupan manusia adalah apabila air minum mengandung unsur tersebut melebihi nilai ambang batas; dengan gejala keracunan kronis yang ditimbulkannya pada tubuh manusia berupa iritasi usus, kerusakan syaraf dan sel. Tailing yang berasal dari proses amalgamasi bijih emas memungkinkan limbah merkuri tersebar di sekitar wilayah penambangan dan dapat membentuk pencemaran lingkungan oleh merkuri organik atau anorganik. Pencemaran akan semakin membahayakan kesehatan manusia apabila unsur merkuri dalam badan air berubah secara biokimia menjadi senyawa metil-merkuri. Terdapat beraneka jenis mekanisma oleh mikro-organisma yang dapat membentuk spesies metil-merkuri bersifat racun, terutama apabila dimakan oleh ikan. Pengaruh organik merkuri terhadap kesehatan manusia termasuk hambatan jalan darah ke otak dan gangguan metabolisma dari sistem syaraf. Sedangkan pengaruh racun merkuri nonorganik adalah kerusakan fungsi ginjal dan hati di dalam tubuh manusia. Kebanyakan kegiatan pertambangan logam dasar melakukan pembuangan tailing dengan kandungan timbal yang signifikan. Timbal adalah unsur yang bersifat racun kumulatif. Penyerapan unsur yang melebihi nilai ambang batas oleh tubuh manusia akan mengikat secara kuat sejumlah molekul asam amino, haemoglobin, enzim, RNA, dan DNA. Hal ini akan mengarah kepada kerusakan saluran metabolik, hipertensi darah, hiperaktif, dan kerusakan otak. Masalah kadmium timbul dari suatu kegiatan pertambangan dan peleburan bijih timbal-seng, dimana pencemaran lingkungan disebabkan oleh tailing mengandung kadmium, dengan penambahan pencemaran oleh asap dan partikel mengandung kadmium. Pengaruh racun kadmium pada kesehatan manusia berupa penyakit lumbago, kerusakan tulang dengan keretakan karena melunaknya tulang dan kegagalan ginjal. ABSTRACT When tailing of a mining activity is discharged into either landscape or river body, the pollutan element wastes are possible to disperse within those areas and may cause pollution on environment. The environment pollution hazards of arsenic As, mercury Hg, lead Pb and cadmium Cd probably occurred if tailing with the content of those elements is not handled properly. Particularly in the tropical regions, higher rates of chemical weathering and bio-chemical activity will contribute a rapid mobilization of the most potentially toxic Badan Penelitian dan Pengembangan Pertanian Widowati Efek Toksik LogamPetunjuk PengambilanContoh TanahPetunjuk Pengambilan Contoh Tanah. Bogor Badan Penelitian dan Pengembangan Pertanian Widowati. 2008. Efek Toksik Logam. Yogyakarta CV. Bahayanya dan PengukurannyaG WurdiyantoWurdiyanto, G. 2007. Merkuri, Bahayanya dan Pengukurannya. Buletin Alara, Volume 9, Nomor 1 dan Dampak Ekonomi, Sosia Budaya dan Kesehatan Masyarakat Akibat Penambangan Emas Di Kecamatan Sawang Aceh SelatanZulkifliZulkifli. 2013. Analisis Dampak Ekonomi, Sosia Budaya dan Kesehatan Masyarakat Akibat Penambangan Emas Di Kecamatan Sawang Aceh Selatan. Jumal Ekonomika Universitas Almuslim Bireun-Aceh, Vol. 1No. 7 Maret dan penyebaran Pb, Cd, dan Pestisida Pada Lahan Sawah Intensifikasi di Pinggir Jalan RayaMulyadi SubowoS WidodoA NugrahaSubowo, Mulyadi, S. Widodo, dan Nugraha, A. 1999. Status dan penyebaran Pb, Cd, dan Pestisida Pada Lahan Sawah Intensifikasi di Pinggir Jalan Raya. Prosiding Bidang Kimia dan dan Bioteknologi Tanah, Puslittanak, Merkuri Hg dalam Tanah dan Jaringan Tanaman Kangkung ipomea reptans yang diberi Bokashi Kirinyu Chromolaena ordota L. pada Limbah Tailing Penambangan Emas Poboya Kota PaluZulfikahM BasirIsrunZulfikah, Basir, M., Isrun. 2014 Konsentrasi Merkuri Hg dalam Tanah dan Jaringan Tanaman Kangkung ipomea reptans yang diberi Bokashi Kirinyu Chromolaena ordota L. pada Limbah Tailing Penambangan Emas Poboya Kota Palu. 2 6 587-595, Desember 2014.
prosesindustri lainnya seperti plastik, perekat, dan pestisida. kegiatan penambangan bijih emas; 2) Limbah cair kegiatan pengolahan bijih bahan logam berat dan menghasilkan limbah buang Pada umumnya jenis limbah dari pertambangan memiliki tiga jenis yaitu zat cair, gas, dan padatan. Hal ini berlaku di pertambangan emas, mulai dari proses pengerukan, pemisahan dari batuan lainnya, serta pemurnian kadarnya. Keseluruhan proses tersebut memerlukan bantuan zat kimia aktif, seperti pemanfaatan sianida untuk menghindari terbentuknya merkuri. Pemecahan bijih juga menghasilkan lumpur yang cukup banyak. Penggunaan alat – alat berat juga memberikan efek signifikan terhadap perubahan komposisi dan kemurnian udara di sekitar pertambangan. Salah satu cara untuk mengatasinya yaitu dengan melakukan pengolahan limbah tambang emas. Hal ini dilakukan untuk mengurangi zat – zat berbahaya dan pengolahan material yang masih bisa dimanfaatkan. Oleh karena itu, pemrosesan limbah tersebut wajib dilakukan, karena dapat mengurangi dampak dan memberikan manfaat yang sangat besar. Salah satu pengolahan limbah yang lazim dilakukan dengan mengubahnya menjadi bahan bangunan. Baca Juga Identifikasi Daerah Penghasil Emas yang Penting untuk Diketahui Pemanfaatan Limbah Tambang Emas Sebagai Bahan Bangunan Salah satu tujuan pembangunan dari Indonesia adalah pembangunan berkelanjutan yang berarti tercipta keseimbangan antara ekonomi serta lingkungan. Hal ini juga berarti bahwa eksploitasi sumber daya secara berlebihan atau pembangunan dengan dampak negatif mulai dikurangi. Salah satunya dengan mengelola hasil pertambangan yang saat ini menjadi isu penting. Urgensi ini ternyata membawa ide baru dalam pengelolaannya, yaitu memanfaatkan tailing dari limbah tambang emas menjadi bahan bangunan, salah satunya sebagai pencampur beton. Tailing memiliki kandungan melebihi batas minimal sebagai pencampur beton. Selain itu, tailingnya sudah terbebas dari logam berat atau sianida hasil dari percampuran dengan semen. Salah satu proses yang dilalui sebelum menjadikan tailing dari limbah tambang emas sebagai material bangunan ramah lingkungan adalah stabilisasi/solidifikasi S/S. S/S ini memberikan efek untuk mengurangi mobilitas logam berat dalam suatu material. Proses tersebut dapat terjadi karena adanya interaksi antara tailing dan zat bersifat pozzolan seperti semen. Campuran tersebut membentuk padatan keras monolit yang terjadi karena sifat kimia dari tailing serta fisik semennya. Hal ini menjadikannya sebagai bahan bangunan ramah lingkungan atau dikenal sebagai Green Fine Aggregate GFA. Ketahanannya sendiri sudah memenuhi persyaratan minimum, yaitu dengan campuran 50% semen dapat menahan 40 MPa. Manfaat yang Akan Dirasakan Manfaatnya dapat dirasakan dalam berbagai bentuk, mulai dari paving block, genteng, batako, panel/tiang, dan berbagai material bangunan lainnya. Material berlimpah menjadikannya sebagai alternatif bahan bangunan berkualitas. Untuk memanfaatkannya bisa dirupakan dalam berbagai bentuk, mulai dari program CSR atau menjualnya secara bebas. Sosialisasi tentang manfaat serta proses pengolahan limbah tambang emas bisa menjadi salah satu langkah kampanye kesadaran mengurangi limbah pertambangan. Indonesia memiliki potensi mineral tinggi, mulai dari emas, perak, minyak bumi, dan berbagai mineral lainnya. Namun salah satu kendalanya adalah memanfaatkan limbahnya. Tetapi kini dengan proses s/s limbah tambang emas bisa jadi bahan bangunan yang berkualitas tinggi dan tinggi akan manfaat. Baca Juga Dari Pengolahan Emas, Ini 5 Manfaat yang Dapat Anda Nikmati Jika Anda tertarik dengan informasi-informasi mengenai emas atau pertambangan emas, Anda bisa membaca artikel-artikel dari PT. Agincourt Resource di sini. Logamberat termasuk merkuri dan timah menyebabkan pencemaran. Aktivitas pertambangan, penghasil limbah padat, proses industri, dan kendaraan bermotor semua dapat melepaskan logam berat ke lingkungan sekitar. Seperti pestisida, dapat bertahan lama dan menyebar melalui lingkungan.
JAKARTA - Petambang emas skala kecil baik yang resmi maupun ilegal masih menjadi penyumbang terbesar terhadap limbah bahan berbahaya dan beracun B3 berupa Prabowo, Penasehat Senior Unit Manajemen Lingkungan Hidup United Nations Development Program UNDP menyampaikan menurut data di Indonesia limbah B3 berupa merkuri yang dihasilkan dan terlepas ke lingkungan dari industri skala kecil sebanyak 340 ton m3 per tahun.“Sekitar 60% [dari 340 ton m3] berasal dari sektor petambang emas. Dari 60% itu 60% terlepas ke udara, 20% ke air dan selebihnya ke dalam tanah,” kata Agus di Jakarta, Selasa 26/3/2019.Agus juga mengatakan bahwa Indonesia disebut sebagai negara nomor tiga yang melepaskan merkuri tersebut ke lingkungan. Agus melihat ada tantangan besar untuk menyelesaikan masalah ini. Di mana pemerintah dan para stakeholder terkait harus mau merayu’ para penambang emas untuk berhenti menggunakan merkuri dalam proses produksi merkuri merupakan bahan kimia yang sangat berbahaya baik bagi lingkungan maupun kesehatan dan kendala utama saat ini adalah fakta bahwa merkuri diperjual belikan secara umum. “Sekarang bagaimana caranya agar para petambang emas itu mau untuk menghilangkan mercury tetapi dengan pendekatan bisnis dan praktek yang sehat, kita harus mencari cara-cara yang elit, jadi sambil mereka [petambang emas] berubah [pola produksinya] dengan cara yang tetap menguntungkan mereka,” yang dikenal sebagai air raksa/quicksilver, adalah logam putih keperakan yang sangat beracun yang cair pada suhu ruangan dan mudah menguap. Menurut United Nations Environment Programme UNEP, begitu dilepaskan, merkuri dapat menjangkau jarak yang jauh dan bertahan di lingkungan serta bersirkulasi dengan udara, air, tanah dan organisme hidup. Paparan merkuri yang tinggi merupakan risiko serius bagi kesehatan manusia dan lingkungan. Cek Berita dan Artikel yang lain di Google News Editor Bunga Citra Arum Nursyifani Konten Premium Nikmati Konten Premium Untuk Informasi Yang Lebih Dalam
.
  • 0vawmyw06b.pages.dev/353
  • 0vawmyw06b.pages.dev/231
  • 0vawmyw06b.pages.dev/117
  • 0vawmyw06b.pages.dev/298
  • 0vawmyw06b.pages.dev/132
  • 0vawmyw06b.pages.dev/170
  • 0vawmyw06b.pages.dev/217
  • 0vawmyw06b.pages.dev/38
  • 0vawmyw06b.pages.dev/54
  • pertambangan emas menghasilkan limbah logam berat cair seperti